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Abstract—While Application Programming Interface (API)
enables an easy and flexible software development process,
selecting a best-fit API is often non-straightforward in practice
due to misunderstanding on the API specification or a complex
programming context etc.. Consequently, the API selection has
always been time-consuming and error-prone. In recent years,
API recommendation systems have been introduced to help
developers choose an API automatically, e.g., Eclipse and
IntelliJ can generate an internal or user-defined API on
the fly. Other research leveraged language models to capture
the regularity in API usage and further guide the completion
of APIs. While existing approaches provided a general support
for API usage, they suffer from the lack of semantic awareness
(e.g., Eclipse) and code relevance (e.g., language model based
methods). To overcome these limitations, we proposed CRMAC
in this paper. The key insight of CRMAC is a combination of a
cache language model which learns code regularity from both
open-source projects and local projects, as well as a relevance
mining engine that identifies similar code to enable a weighted
language model training. In our empirical evaluation, CRMAC
overwhelmed n-gram approaches, with an improvement of 5.28%
in terms of top 10 accuracy. Moreover, over 79% APIs were
correctly predicted in the top 10 guesses of CRMAC.

Index Terms—Code completion, n-gram model, code relevance
mining, interaction data

I. INTRODUCTION

Code completion assistant is useful for developers in the
development of software. If developers do not have code
recommendation plugins in the IDE, they have to turn to Java
documentation to search the APIs they need. It is apparent
that this process costs developers much time and it is really
unnecessary. Hence, it is critical to develop a useful API
completion tool. However, it is notoriously challenging to
predict the API accurately since the information obtained from
the code is limited. In particular, we can only get the type
of the object in Java code and find the possible APIs by
looking up the Java documentation, but in many scenarios,
we still need the methods defined in previous code. Moreover,
code completion is not robust in some cases because of the

absence of current context in the code corpus, which hinders
the generation of the correct API usage. Hence, it is vital to
delve into this topic and design a powerful tool.

The code in repositories is an important source for mining,
and it is a form of interaction data. It stores the programming
habits of developers, and can facilitate the coding process
of programmers. In practice, several natural language models
are applied in the code completion because programming
languages share some same features as natural languages [1].
Particularly, they are both written in a specific grammar and
repetitive locally. Recent years has witnessed a huge progress
on building language models for code prediction [2] [3] [4]
[5]. For example, [6] [3] [7] show how to sum up the API
context and use key features to decide which API to suggest
and [8] [9] [10] split code into tokens and train models such
as n-gram and decision-tree to predict a word. Despite wide
applications, these tools are not robust enough in some circum-
stances. Moreover, many of these studies are only based on
the models trained in the code corpus, and pay little attention
to the projects in development. Some researchers have also
proposed a cache model to extract the information from current
project [11]. They split the traditional n-gram model into two
parts and assign weights to each of them in order to overcome
the difficulty mentioned above. One drawback of this model
is that it cannot capture the difference between files. Note that
n-grams in different files have distinct importance during the
model training, we can potentially extend cache model in a
more general and powerful form.

In this paper, we present an API-level code completion tool
CRMAC. To our best knowledge, this is the first tool which
can handle both fuzzy searching and code relevance mining
simultaneously. In our work, we select the n-gram model to
model the code and apply traditional operations to the n-
gram model training such as Lidstone smoothing and back-off
operation. In order to make the tool more robust, an algorithm
of fuzzy search is proposed to find the content similar to
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the current one. Based on these techniques, we are able to
generalize the cache model and design an algorithm of code
relevance mining. The experiment results demonstrate that our
code relevance mining improves the performance of the tool
and increases the top10 accuracy by 6% on average.

Contribution. Main contributions are summarized below.
• We implement a tool CRMAC for API-level code completion

by modeling the code with n-gram model and combining
two n-gram models into a cache model.

• We propose the method of fuzzy searching, which can
handle some extreme cases and make the tool more robust.

• The concept of code relevance mining is proposed in this
paper, and it can improve the performance of completion.

Paper Organization. The rest of this paper is organized
as follows. Section 1 is the introduction of API completion.
In section 2, the background of program language models is
introduced and the n-gram model is explained in details. The
design of CRMAC is illustrated in the section 3, including the
architecture of the tool, cache model, fuzzy searching and code
relevance mining. Section 4 displays the result of experiment,
which demonstrates the performance of fuzzy searching and
code relevance mining. Section 5 discusses related works and
potential directions in future. Conclusions of this work are
summarized in the section 6.

II. BACKGROUND

N-gram model is one of the most frequently used models
when we model the natural languages and programming
languages [12] [13]. It is a simple but effective way to
capture the regularity of the languages. N-gram model is aimed
to calculate the probability of the sentences. Based on the
definition of conditional probability, the probability can be
calculated in the following formula:

p(a1a2...ak) = p(a1) ∗ p(a2|a1) ∗ ... ∗ p(ak|a1a2...ak−1)

In an n-gram model, we have an assumption that

p(al|a1a2...al−1) = p(al|al−n+1...al−1)

Hence, if we choose a tri-gram, we can get the approximate
formula of the probability

p(a1a2...ak) = p(a1)∗p(a2|a1)∗p(a3|a1a2)∗...∗p(ak|ak−2ak−1)

For a specific sequence, some terms in the formula are equal
to 0, so the total probability is 0. Some operations such
as smoothing and back-off operation are applied in the n-
gram model. In our work, we use Lidstone smoothing which
is a universal method of smoothing in the model. Lidstone
smoothing is a general form of Laplacian smoothing. Take
Lidstone smoothing in a tri-gram as an example. Assume V is
dictionary with the capacity of V, and α is a positive number.
Then the probability after smoothing is

p(am|am−1am−2) =
count(am−2, am−1, am) + α

Σa′∈Vcount(am−2, am−1, a′) + V α

Back-off set the approximate probability of original sequence
to the probability of the suffix of the sequence multipled with
a discount parameter. In our work, we only define Lidstone
smoothing, and it is enough to obtain a good performance.

We calculate the cross entropy of six Java projects modeled
by n-gram models. It shows that trigrams can capture enough
information, and higher order n-gram models do not have
obvious improvements compared with trigrams, while they
suffer from high time complexity when being trained. We
choose the trigram model as the kernel model.

III. DESIGN OF CRMAC
The overall structure of CRMAC is presented in Figure 1.

For training, each file is compared with the file which is being
edited, and a training weight is returned to the trainer. The n-
gram trainer trains two n-gram models in the code corpus and
current project, combine them into a cache model.

Fig. 1: CRMAC architecture

For predicting, the source code prior to the position users
invoke the code completion are taken as the context. Given
a context, we design the context searcher to find all similar
contexts to get a thorough understanding of the given context
to improve the accuracy of prediction. Based on the contexts
found by the context searcher, the synthesizer infers a set of
APIs by retrieving information from the cache model.

A. Cache Model

Cache model is firstly proposed in [4], and it is similar
to a cache-based natural language model [14] in natural
language processing. Software code has the property of local
repetitiveness, and a code snippet in a project might be written
for many times. For example, if a project is developed by a
single person, he tends to write FOR statement when he needs
loop structure, so the code ”for (int i = 0; i < n; i++)” have
a high probability to occur in his code.

When training the n-gram model, we have two training sets.
One is the external code corpus, and the other is the project
which is being developed. In some cases, the code in the
current project contains more information we need than the
external corpus [15]. In such cases, We can assign a larger
weight to the n-grams in the current projects than those in the
external corpus to capture this information.

Assume that we have two n-gram models. The model trained
in the current project is cache component, and the model
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trained in the code corpus is corpus component model. If we
need to complete the token in the current file, we can combine
these two models in the following way.

P (ti|h, cache) = λ ∗ Pcorpus(ti|h) + (1− λ) ∗ Pcache(ti|h)

The problem is that how to set the value of the parameter λ.
If an n-gram occurs many times in current project, the cache
component should be assigned much larger weight. Hence, it
is obvious that the weight should be relevant to the number
of the n-gram occurrence. We can set λ as follows.

λ = r/(r +H)

H is the number of times that prefix occurs in the current
project, and r is called concentration factor. When r is fixed
to a certain value, the formula satisfies our condition. This is a
good design for the weights in the combination of two models.

Algorithm 1 GetProbFromCM

Require: modelcorpus: n-gram model trained in code corpus
modelcache: n-gram model trained in current project
context: content in the current file
r: concentration factor

Ensure: p(h): probability of suffix of current context
1: h← ExtractCompletionPrefix(context)
2: H ← GetOccurenceCount(modelcache, h)
3: weight1← r/(r +H)
4: weight2← H/(r +H)
5: prob1← GetProbFromComponent(modelcorpus, h)
6: prob2← GetProbFromComponent(modelcache, h)
7: prob← prob1 ∗ weight1 + prob2 ∗ weight2
8: return prob

Algorithm 1 is the key algorithm when we use cache model
to calculate the probability. After extracting the context which
needs to be completed, the number of context occurrence
is computed by the function GetOccurenceCount. Then the
weights assigned to two components of cache model are
calculated. At last, two probabilities are combined in linear
form using weight1 and weight2.

In cache model, concentration factor r is a parameter which
is set before the token inference. There is no magical way to
get the optimal setting. In most cases, we can obtain a good
performance as long as r is not too small. It can be set to
the value larger than 10. In the section 4, we compare the
accuracy of the model with different values of r.

B. Context Searcher

Language models are weak in handling unseen data which
may be similar to the existing data but not exactly the same.
Also, as language models suffer from forgetting information
from a long time ago, we need to handle long context and
unseen data. Fuzzy searching algorithm are applied in this
work to find other alternative contexts.

Given a context under which the code to be completed,
we find alternative contexts and the code next to contexts

found become candidates to be predicted. By computing a
small probabilistic model based on the contexts found, We
can decide more comprehensively which code following those
contexts is the best to be predicted.

Fig. 2: An example of searching contexts

Algorithm 2 SearchForContexts

Require: given context (must be a token list)
Ensure: contexts← ∅

1: for token : given context do
2: first token← token
3: list set← {[first token]}
4: depth← 0
5: max depth← given context.length() ∗ 1.5
6: while depth < max depth do
7: new list set← ∅
8: for one list : list set do
9: tset← InferNextTokens(one list)

10: for next token : tset do
11: next list← one list+ next token
12: contexts = contexts ∪ new list
13: end for
14: end for
15: list set← new list set
16: depth++
17: end while
18: end for
19: contexts← SortAndMinizationContexts(contexts)
20: return contexts

We adopt the BFS algorithm to find possible alternative
sequences. Algorithm 2 illustrates the details in the context
searching. At first, we choose each token in the context and
search for all token sequences which start with it. Algorithm
invokes the function InferNextTokens in line 9 to extend the
sequence. Then we get a large number of token sequences
which are possible contexts. At last, we use the function
SortAndMinimizeContexts in line 19 to sort the sequences by
their similarity with the context.

Figures 2 displays an example of searching contexts. Give
a sequence ”ABCD”, the algorithm starts at A, keeps inferring
next tokens of A to form multiple token sequences which is a
path from the root to the leaves. The tokens in the blue boxes
are matched to the tokens in positions of original sequence.

Longest common subsequence algorithm is applied in the
function SortAndMinimizeContexts to compute the length of
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common subsequences between inferred contexts and original
contexts. The inferred context with higher ratio of the common
subsequence is more likely to be the alternative choice.

C. Relevance Miner

Cache model takes advantages of the difference of impor-
tance between n-grams in code corpus and current project.
Code corpus and current project are assigned different weights
dynamically based on the occurrence of current n-gram, so
cache model can be regarded as a rough partition of the
training data set. This core insight makes cache model more
powerful than the traditional n-gram model.

We can extend cache model to a more general form. The file
which is being edited has different relevance to different files
in the corpus and current project. It is a natural idea to extract
features of these files to compare the similarity between two
files. If a file is similar to current file, the n-grams in this file
should have larger weight when training n-gram models.

Hence, if we run the algorithm of code relevance mining in
the training data set including code corpus and current project,
we assign a weight to each n-gram two twice. The weight in
cache model is corpus-level. However, in this new model, we
calculate the file-level weight. It is obvious that the new model
can capture more relevant APIs than the old one.

The remaining problem is that how to extract the feature
of a source code file and calculate the similarity between two
files. There are various ways to solve it, such as generating
the AST trees of code, extracting the features of the AST trees
and comparing the features. There are many tools available on
line to support such operations. In our work, we segment the
function names in the Java file to form a set of substrings.
Then we compare two sets obtained from two Java files, and
count the common substrings in two sets.

Algorithm 3 FindAPI

Require: modelcorpus: n-gram model trained in corpus
modelcache: n-gram model trained in current project
r: concentration factor
text: code context

Ensure: new items
1: token list1← getMapV alue(modelcorpus, text)
2: token list2← getMapV alue(modelcache, text)
3: candidates map← ∅
4: for token : token list1 do
5: prob← GetProbFromCM(modelcorpus,modelcache, r)
6: items map.put(token, prob)
7: end for
8: for token : token list2 do
9: prob← GetProbFromCM(modelcorpus,modelcache, r)

10: items map.put(token, prob)
11: end for
12: new items← ExtractItemsByProb(items map)
13: return new items

D. Synthesizer

When receiving a completion request, the tool scratches the
content in current editing environment. Components in cache
model are both retrained according to the weight calculated
by the relevance miner. Then context searcher searches for
all possible contexts similar to the current context, and every
context is fed into a synthesizer. At last, possible APIs are
generated by function FindAPI.

Algorithm 3 explains each step to search possible APIs
when two components of the model have been trained. At first,
all possible APIs are retrieved from two components in line 1
and 2. From line 4 to line 10, each probability corresponding
to the API is computed and stored in two maps. At last, APIs
are sorted based on their corresponding probability.

In Algorithm 4, function TrainNGram executes the training
phase in the n-gram model from line 4 to line 7. Function
GetProbFromCM is invoked by FindAPI to calculate the
probability in the model, and FindAPI provides the list of
choices sorted by probability.

Algorithm 4 CompleteAPI

Require: context: current context
curfile: current file
corpfiles: the list of Java files in the corpus
projfiles: the list of Java files in the current project
r: concentration factor

Ensure: token list
1: model1 ← ∅
2: model2 ← ∅
3: token list← ∅
4: for file : corpfiles do
5: weight← GetWeight(file, curfile)
6: model1 ← model1 ∪ TrainNGram(file, weight)
7: end for
8: for file : projfiles do
9: weight← GetWeight(file, curfile)

10: model2 ← model2 ∪ TrainNGram(file, weight)
11: end for
12: contexts← SearchForContexts(context)
13: for text : contexts do
14: new items← FindAPI(model1,model2, r, text)
15: token list← token list ∪ new items
16: end for
17: return token list

The input of algorithm 4 includes current code context,
current projects, code corpus and concentration factor. Func-
tion CompleteAPI is the main entry of the tool CRMAC and
be invoked when the tool receive a request of API completion.

IV. EXPERIMENT RESULTS

CRMAC is implemented in Java and contains modules in-
cluding n-gram trainer, context searcher, relevance miner and
synthesizer. Synthesizer depends on the other three modules.
The kernel model of CRMAC is an array of multiple n-gram

10

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on September 05,2022 at 02:13:55 UTC from IEEE Xplore.  Restrictions apply. 



models. If the maximal order of n-gram we need is k, we need
to train k n-gram models in order to calculate the probabilities.

Three groups of experiments are performed. In the first
group, we set the concentration factor to 0, and cache
model becomes traditional n-gram model. CRMAC also uses
traditional n-gram model as its kernel. In the second group,
we set the concentration factor in the cache model to 10.
Concentration factor is set to 100 in the third group of
experiments. The details of experiments are following.

Experimental Setup. We have proposed an approach to
predict APIs based on the statistical model and code relevance
mining. We implemented our approach based on the cache
model embedded with relevance miner to predict APIs. In
order to demonstrate the effect of cache component in cache
model, a group of experiments are also performed by setting
the concentration factor to 0. We use traditional n-gram model
and cache model respectively to predict APIs in the places
where an API occurs. Then we check any one of the APIs in
the returned list can match the right API exactly. And then we
do the same tasks by using CRMAC. CRMAC, cache model
and traditional n-gram model both use trigram model. All the
experiments were performed on a laptop with Intel i5-4210M
2.6GHZ processor and 12GB memory. We have collected
6 open-source Java projects to evaluate the performance of
CRMAC: Ant, Batik, Cassandra, Log4J, Maven2, Xalan. We
use two-fold cross validation, and complete the APIs in 50%
files in the testing project. We keep records of top1, top3,
top5 and top10 accuracy, and calculate the MRR which is
the mean value of the reciprocal of the rank. When MRR is
close to 1.0, the tool almost achieves the best performance.

Results. The results are shown in Table I, Table II and
Table III. We implement experiments in six Java projects. The
models are trained in five of them. We use half of files in the
remaining project to produce the API recommendations and
each project is tested twice.

When the kernel model is n-gram model, on average
CRMAC can hit 69.0% of correct APIs in top 10, and the
average top10 accuracy of traditional n-gram model is 64.8%.
When the kernel model is cache model and concentration
factor r is 10, both cache model and CRMAC perform much
better than traditional n-gram model and CRMAC equipped
with traditional n-gram model respectively. Cache component
contributes 4.2% improvements in the top10 accuracy. Addi-
tionally, code relevance mining also improves the performance
of the tool. Consider Top1 accuracy, CRMAC improves the
accuracy from 41.9% to 50.0% in the project Xalan. Consider
Top3 accuracy, CRMAC improves the accuracy from 50% to
54% in the project Ant. Consider Top5 accuracy, CRMAC
contributes 10% accuracy improvement in the project Xalan.
CRMAC predicts APIs in the project Maven2 very well, and
achieve 78% accuracy in Top10, and MRRs in this project
are 59.0% and 57.3% which are the top 2 MRRs. On average,
CRMAC improves the top3 accuracy by 4.79% and the top10
accuracy by 5.28% when equipped with cache model.

Fig. 3: Lists of function names in two Java files

Fig. 4: Two code snippets

The improvements in the second group of experiments
are mainly due to code relevance between editing file and
training files. Figure 3 displays an good example. Functions
in LineContains.java and LineContainsRegExp.java have the
similar names, and two files both contain a same segment of
code shown in snippet 1 in Figure 4. When the tool completes
the API after ”line” in LineContains.java, LineContainsReg-
Exp.java is found as the most similar file to LineContains
after the code relevance mining, and it is assigned to a larger
training weight. Cache model cannot predict the correct API
in this example, and gives ”charAt” in the top 1 position. It is
due to the occurrence of ”charAt” in the code snippet 2 which
is in the HeadContains.java. HeadContains.java is less similar
to the LineContains.java. Hence ”substring” is selected in the
code mining. However, if all the training files have the same
similarity with the current file, relevance miner cant make any
contribution to the accuracy. Fortunately, most of files do not
have the same similarity with the file which is being edited,
so our algorithms perform well.

In the third group of experiments, we set r equal to 100.
In this group, the cache component has a larger weight in
the cache model compared to the model in the second group.
However, the result reveals that changing r from 10 to 100
does not bring the improvement of accuracy. The main reason
is that most of n-grams in the current projects do not occur
many times, so larger value of r cannot make extra n-grams
in the current project selected in the inference phase.

V. RELATED WORK

This paper demonstrates a framework of API completion
tool. Some techniques in this work are worthy of further
research. In this section, we have a brief discussion about the
following related topics.
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TABLE I: ACCURACY OF API COMPLETION R=0

Test Project
Top1 Top3 Top5 Top10 MRR

cache model CRMAC cache model CRMAC cache model CRMAC cache model CRMAC cache model CRMAC

Ant 1 39.1% 43.2% 42.3% 47.8% 54.6% 59.4% 62.5% 69.1% 40.2% 45.8%
Ant 2 40.1% 42.2% 44.7% 49.0% 55.9% 60.1% 64.9% 71.1% 41.8% 46.9%

Batik 1 43.2% 47.5% 46.1% 51.0% 60.3% 65.9% 71.0% 72.9% 44.2% 49.0%
Batik 2 40.4% 45.3% 44.2% 49.9% 58.2% 63.3% 68.1% 70.1% 42.1% 47.5%

Cassandra 1 42.1% 45.5% 45.9% 48.8% 54.1% 58.9% 63.9% 69.7% 44.0% 47.2%
Cassandra 2 42.6% 45.1% 46.1% 49.0% 55.2% 59.7% 64.1% 70.2% 44.1% 47.7%

Log4J 1 38.9% 43.4% 43.5% 47.0% 51.0% 56.2% 57.4% 62.1% 40.3% 45.1%
Log4J 2 37.2% 41.3% 42.9% 45.9% 49.5% 54.0% 56.2% 62.0% 39.8% 43.9%

Maven2 1 45.3% 51.2% 50.1% 55.2% 56.1% 62.0% 68.1% 71.0% 47.3% 53.0%
Maven2 2 47.2% 51.7% 52.0% 56.0% 57.9% 63.6% 70.5% 71.2% 49.7% 53.6%
Xalan 1 38.9% 46.0% 43.8% 50.5% 51.7% 62.4% 65.7% 68.1% 40.5% 47.6%
Xalan 2 39.1% 46.8% 43.7% 51.7% 50.1% 63.6% 64.9% 69.9% 41.8% 48.7%

TABLE II: ACCURACY OF API COMPLETION R=10

Test Project
Top1 Top3 Top5 Top10 MRR

cache model CRMAC cache model CRMAC cache model CRMAC cache model CRMAC cache model CRMAC

Ant 1 46.1% 50.8% 50.2% 54.3% 60.5% 64.6% 67.1% 73.2% 48.0% 52.1%
Ant 2 46.1% 50.9% 51.8% 54.7% 62.5% 65.4% 66.8% 74.3% 48.2% 52.3%

Batik 1 45.2% 49.7% 49.8% 53.1% 65.7% 69.3% 73.6% 76.7% 47.3% 51.2%
Batik 2 44.7% 48.9% 48.4% 52.3% 63.1% 68.1% 71.7% 74.2% 46.8% 50.5%

Cassandra 1 46.0% 51.9% 50.7% 56.8% 60.2% 66.4% 69.8% 75.5% 48.1% 54.9%
Cassandra 2 47.0% 54.2% 51.2% 57.5% 62.2% 69.8% 70.8% 77.5% 48.9% 55.7%

Log4J 1 42.9% 45.8% 45.8% 50.1% 54.9% 59.4% 60.1% 68.4% 44.1% 47.4%
Log4J 2 40.1% 44.7% 43.4% 49.8% 51.6% 58.3% 59.5% 67.6% 41.8% 46.9%

Maven2 1 49.3% 55.2% 53.5% 59.6% 58.7% 65.9% 72.6% 77.3% 51.0% 57.3%
Maven2 2 50.2% 57.1% 54.9% 62.3% 59.1% 67.0% 73.4% 78.3% 52.3% 59.0%
Xalan 1 43.6% 50.1% 46.9% 54.7% 56.1% 66.0% 71.4% 74.9% 45.5% 52.8%
Xalan 2 42.9% 49.8% 45.0% 53.9% 54.9% 68.9% 69.8% 72.0% 44.3% 51.9%

TABLE III: ACCURACY OF API COMPLETION R=100

Test Project
Top1 Top3 Top5 Top10 MRR

cache model CRMAC cache model CRMAC cache model CRMAC cache model CRMAC cache model CRMAC

Ant 1 45.8% 47.9% 51.7% 53.2% 58.9% 65.7% 66.9% 74.3% 47.3% 50.2%
Ant 2 45.4% 50.4% 50.1% 55.8% 63.1% 66.2% 68.6% 75.1% 47.1% 52.0%

Batik 1 43.5% 46.7% 48.1% 52.9% 66.2% 70.4% 72.5% 75.9% 45.2% 49.8%
Batik 2 41.4% 46.1% 47.6% 51.2% 65.8% 69.6% 72.9% 74.9% 43.8% 48.2%

Cassandra 1 46.9% 52.7% 51.9% 57.1% 61.7% 67.0% 70.3% 74.2% 48.0% 54.9%
Cassandra 2 47.3% 52.0% 52.4% 56.8% 62.9% 68.9% 71.1% 76.7% 49.8% 53.6%

Log4J 1 40.2% 46.9% 44.9% 51.2% 55.6% 60.1% 62.4% 68.0% 42.1% 48.0%
Log4J 2 40.1% 45.8% 43.7% 50.2% 53.5% 58.9% 61.0% 69.1% 41.5% 47.8%

Maven2 1 49.4% 55.9% 53.7% 59.6% 58.4% 66.4% 72.9% 76.8% 51.0% 57.3%
Maven2 2 50.1% 56.9% 54.5% 61.7% 60.1% 68.2% 73.3% 77.9% 52.3% 58.8%
Xalan 1 42.9% 50.3% 47.3% 55.1% 55.2% 66.7% 71.9% 75.1% 44.1% 52.8%
Xalan 2 41.9% 50.0% 45.8% 54.9% 55.5% 67.5% 70.8% 74.2% 43.6% 52.1%

Heuristic algorithms. Fuzzy search in this work is a heuris-
tic algorithm and can be extended to a more general form. We
use LCS algorithm to calculate the similarity between two
sequences. Many other methods including genetic algorithms
can also give some elegant solutions to this problem.

Code mining is also an important topic in the programming
language. In many cases, we can compare two snippets of code
by their AST trees. If two trees are almost the same, these
two snippets can be regards as the same code. Some parts of
code may not have the same token sequences with each other,
but they have same semantic information. For instance, the
variable names are totally different in two source code files,
but an one-to-one map of variables can be established between
two files. This problem is not only in the range of the code
completion, but also studied in the code clone. [16] [17] [18]
[19]

Other language Models. We use the traditional n-gram
model in this model. N-gram model cant capture the regularity
of long sequence of code, so we need to consider choosing
other models. There are many other alternative language
models, including skip n-gram model, LSTM and other com-
binatorial models [20] [21] [22] [23]

VI. CONCLUSIONS

In this paper, we proposed a novel tool CRMAC to complete
the APIs in the development of Java project. We modeled the
program language via n-gram model and cache model, and
utilized context searcher to guarantee that the tool provides
the APIs in all possible cases. Moreover, we proposed a
straightforward and efficient method of code mining to get
the relevant degree between two source files, which made the
completion more accurate due to the training weights fed to n-
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gram model trainer. Our CRMAC improves the top3 accuracy
by 4.79 percent points and the top10 accuracy by 5.28 percent
points. In the future, we will adopt the intermediate represen-
tation to implement the expression-level code completion, and
try the graph-based model or deep learning model to make
full use of the interaction data in the code repositories.

REFERENCES

[1] F.Jacob and R.Tairas, “Code templete inference using language models,”
in ACMSE, 2010, pp. 104:1–104:6.

[2] A.T.Nguyen and T.N.Nguyen, “Graph-based statistical language model
for code,” in ICSE, 2015, pp. 858–868. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2015.336

[3] V.Raychev, P.Bielik, and M.T.Vechev, “Probabilistic model for code
with decision trees,” in OOPSLA, 2016, pp. 731–747. [Online].
Available: http://doi.acm.org/10.1145/2983990.2984041

[4] Z.Tu, Z.Su, and P.Devanbu, “On the localness of software,” in The ACM
Sigsoft International Symposium, 2014, pp. 269–280.

[5] M.Gabel and Z.Su, “A study of the uniqueness of source code,” in FSE,
2010, pp. 147–156.

[6] V.Raychev, M.T.Vechev, and E.Yahav, “Code completion with statistical
language models,” in PLDI, 2014, p. 44. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594321

[7] Y.Yang, Y.Jiang, M.Gu, J.Sun, J.Gao, and H.Liu, “A language model for
statements of software code,” in ASE. IEEE Press, 2017, pp. 682–687.

[8] K.Hoa, T.Tran, and T.Pham, “A deep language model for software code,”
in arXiv preprint arXiv:1608.02715.

[9] M.White, C.Vendome, M.Linares-Vasquez, and D.Poshyvanyk, “Toward
deep learning software repositories,” in Ieee/acm Working Conference on
Mining Software Repositories, 2015, pp. 334–345.

[10] T.T.Nguyen, A.T.Nguyen, H.A.Nguyen, and T.N.Nguyen, “A statistical
semantic language model for source code,” in ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18-26, 2013, 2013, pp. 532–542.
[Online]. Available: http://doi.acm.org/10.1145/2491411.2491458

[11] C.Franks, Z.Tu, P.Devanbu, and V.Hellendoorn, “Cacheca: A cache
language model based code suggestion tool,” in ICSE, 2015, pp. 705–
708.

[12] W. B. C and T. M, “N-gram-based text categorization,” vol. 48113, no. 2.
Citeseer, 1994, pp. 161–175.

[13] P.F.Brown, P.V.deSouza, R.L.Mercer, V.J.D.Pietra, and J.C.Lai, “Class-
based n-gram models of natural language,” in Computational Linguistics,
16(2), 1992, pp. 467–479.

[14] R.Kuhn and R.D.Mori, “A cache-based natural language model for
speech recognition,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(6), 1990, pp. 570–583.

[15] R.Robbes and M.Lanza, “Improving code completion with program
history,” in Automated Software Engineering 17(2), 2010, pp. 257–277.

[16] J.Gao, X.Yang, Y.Fu, Y.Jiang, and J.Sun, “Vulseeker: a semantic learning
based vulnerability seeker for cross-platform binary,” in ASE. ACM,
2018, pp. 896–899.

[17] J.Gao, X.Yang, Y.Fu, Y.Jiang, H.Shi, and J.Sun, “Vulseeker-pro: en-
hanced semantic learning based binary vulnerability seeker with emula-
tion,” in FSE. ACM, 2018, pp. 803–808.

[18] C.Wang, Y.Jiang, X.Zhao, X.Song, M.Gu, and J.Sun, “Weak-assert:
A weakness-oriented assertion recommendation toolkit for program
analysis,” in ICSE(Companion Volume). IEEE, 2018, pp. 69–72.

[19] H.Liu, Z.Yang, C.Liu, Y.Jiang, W.Zhao, and J.Sun, “Eclone: Detect
semantic clones in ethereum via symbolic transaction sketch,” in ES-
EC/SIGSOFT FSE. ACM, 2018, pp. 900–903.

[20] S.Andreas, Z.Jing, W.Wen, and A.Victor, “Srilm at sixteen: Update and
outlook,” in Proceedings of IEEE Automatic Speech Recognition and
Understanding Workshop, 2011, p. 5.

[21] X.Wang, M.Andrew, and W.Xing, “Topical n-grams: Phrase and topic
discovery, with an application to information retrieval,” in Data Mining,
2007. ICDM 2007. Seventh IEEE International Conference on. IEEE,
2007, pp. 697–702.

[22] P.Bielik, V.Raychev, and M.Vechev, “Phog: Probabilistic model for
code,” in ICML, 2016.

[23] Y.Jiang, H.Zhang, H.Liu, X.Song, W.Hung, M.Gu, and J.Sun, “System
reliability calculation based on the run-time analysis of ladder program,”
in ESEC/SIGSOFT FSE. ACM, 2013, pp. 695–698.

13

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on September 05,2022 at 02:13:55 UTC from IEEE Xplore.  Restrictions apply. 


