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scalability. In this work, we present a parallel algorithm Octopus to collect path conditions for realizable paths efficiently.
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in parallelization. We implement Octopus as a tool and evaluate it over 15 real-world programs. The experiment shows
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with 6.3 MLoC within 6.9 minutes under the 40-thread setting. We also state and prove several theorems to demonstrate the
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1 INTRODUCTION

Value-flow analysis aims to identify whether a value constructed at a program location can flow to a destination
location [11, 32, 53, 62]. The analysis of value flows underpins a wide range of applications, such as value-flow
bug detection [11, 17, 65], program diagnosis [19, 20, 75], and automated program repair [24]. For example, to
detect NULL-pointer-dereference (NPD) bugs, we need to track whether a NULL value assigned to a pointer can
flow to a pointer dereference statement.
To improve the analysis precision, most existing efforts attempt to achieve context sensitivity to constrain

the propagation of values. Specifically, they instantiate the context-sensitivity via the extended Dyck-CFL-
reachability [47, 51, 76] over specific graphs (e.g., the super-graph [50] and the program-valid graph [10]). A
vertex 𝑠 is extended Dyck-CFL-reachable from a vertex 𝑡 if and only if there exists a path from 𝑠 to 𝑡 in the graph,
and the realized string of the path formed by the edge labels belongs to the extended Dyck-CFL [51, 76]. Such a
path is referred to be realizable, indicating that the value flows respect the calling context, which is represented by
its realized string. In addition, a realizable path is feasible only if its path condition is satisfiable, meaning program
execution following such a value flow can happen. Existing analyses determine the feasibility by collecting the
conditions of realizable paths between 𝑠 and 𝑡 and examining the satisfiability of the logical disjunction of the
conditions, which plays a central role in various clients, e.g., value-flow bug detection.

Goals and Challenges. In this paper, we work on context- and path-sensitive value-flow analysis formulated
over the guarded value-flow graph [33, 53, 62, 65, 72]. Specifically, we consider the problem of efficient collection of
realizable path condition: given a source 𝑠 and a sink 𝑡 of interest, we aim to efficiently obtain the path conditions
of the realizable paths between 𝑠 and 𝑡 . After efficiently collecting the path conditions between each 𝑠-𝑡 pair,
we can invoke a solver to determine the feasibility between each 𝑠 and 𝑡 . However, this task is challenging as
determining realizability and collecting path conditions require different information. Determining realizability
between 𝑠 and 𝑡 requires transitively collecting realized strings during analysis using an 𝑂 (𝑛3) tabulation-based
algorithm [48], which presents a complexity barrier for theoretical optimizations [13, 75]. Additionally, collecting
path conditions on every realizable path for each s-t pair on the guarded value-flow graph cannot be piggybacked
with existing tabulation-based algorithms. Achieving both goals require non-trivial modification to the original
algorithms and leads to higher computational complexity, necessitating a more efficient universal algorithm.

Existing Effort. Existing approaches mainly optimize the scalability in the context of accelerating context-
sensitive analysis, and, thereby, the overall efficiency of the analysis beyond context sensitivity could be improved.
In particular, they propose parallel versions of tabulation-based approaches [1, 39, 55] by identifying the inde-
pendence of caller-callee relations in a program. During the reasoning of realizability, the path conditions are
also encapsulated in the function summaries. Although some functions can be analyzed in parallel, many still
have strong dependencies on the ones of its callees, resulting in the imbalance in parallelization and further
limiting the potential speedup and achieving satisfactory scalability. A recent parallel analyzer, named Coyote,
relaxes the dependencies to improve parallelism while it is still distant from reaching the pleasant speedup to
achieve satisfactory scalability [55] because there still exist some caller-callee dependencies that cannot be relaxed.
Particularly, when the call graph of a program is close to a long chain, Coyote can only generate the summaries
of a restricted number of functions at the same time, thus limiting the parallelism brought by Coyote. Besides,
there is a line of previous studies targeting the optimization of the path condition collection via slicing [53, 54].
However, they rely on a parallel or serial version of the context-sensitive analysis to collect realizable value-flow
paths, limiting their scalability significantly.

Insight and Solution. In this work, we make no claims of breakthroughs to the innate complexity barrier
of context-sensitive analysis or the inherent scalability issues of SMT solving. Instead, we aim to scale up the
analysis via parallelism but more efficiently. Our idea comes from two key observations.
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• First, any realizable path condition comprises intraprocedural path conditions. Consider the program in
Figure 1a and its guarded value-flow graph in Figure 1b as an example. The realizable path condition from
NULL2 to 𝑏6 take path conditions of two interprocedural paths: (𝜙1 ∧ 𝜙𝑏𝑎𝑟 (𝑎) . . . ) ∨ (¬𝜙1 ∧ 𝜙𝑏𝑎𝑧 (𝑎) . . . ) The
final path condition is the logical disjunction of the path conditions of the intraprocedural paths across
functions foo and bar.
• Second, the realizability of an interprocedural value-flow path does not depend on that of its intraprocedural
counterparts. Instead, it only relates to the labeled edges across callers and callees. In Figure 1b, the

realizability relies solely on the edges induced by the call site, e.g., 𝑎3
(3−→ 𝑝8, 𝑓10

)3−→ 𝑏3.

According to the observations, our key insight is to decouple intraprocedural path condition collection from
the realizability reasoning. To enable such decoupling, we propose a novel concept named the realizability
decomposition, which is achieved by the following three aspects. First, we introduce the notion of the value-flow
segment as the minimum unit that summarizes intraprocedural value-flow paths, which guides the intraprocedural
path condition collection. Second, we present a new graph representation, namely the value-flow segment graph,
to preserve the capability of identifying the realizable paths, further enabling us to construct the realizable path
condition by composing intraprocedural path conditions. Third, the realizability of value-flow segments on the
value-flow segment graph foresees possible ways to concatenate intraprocedural paths into interprocedural
ones, enabling us to collect realizable path conditions efficiently. Based on the abstraction, we present a parallel
algorithm named Octopus, which consists of three parts:

• Value-flow segment graph generation: We traverse the guarded value-flow graph of each function and
construct a value-flow segment graph in parallel, where each segment summarizes the intra-procedural
value-flow paths. For example, ❶ in Figure 1b is a value-flow segment that summarizes all intraprocedural
paths from NULL2 to 𝑎3. All segments and edges taken from the guarded value-flow graph in Figure 1b
constitute a value-flow segment graph in Figure 1c.
• Realizable segment path search: We present a parallel algorithm to find the realizable segment paths on
the value-flow segment graph. For example, the path ❶→❹→❽ in Figure 1c is a realizable segment path,
which compactly summarizes a series of realizable value-flow paths.
• Path condition collection: We recover path conditions from the realizable segment paths by exploring each
intraprocedural segment on the guarded value-flow graph. For example, we recover conditions for ❶, ❷, ❹,
❻, and ❽ all in parallel, then compose them to obtain the realizable path conditions. Eventually, we obtain
the path conditions (𝜙1 ∧ 𝜙2) ∨ (¬𝜙1 ∧ (¬𝜙4 ∨ (𝜙3 ∧ 𝜙4))) for the source-sink pair (NULL2, 𝑏6).

Once the realizable path conditions are obtained, we can invoke a solver to determine the satisfiability. Notably,
our algorithm is less vulnerable to the imbalance issue that tabulation-based approaches (e.g., [49, 55]) are prone
to for the following reasons. First, searching paths on a value-flow segment graph foresees the underlying
realizable paths and avoids redundant intraprocedural path condition collection. Second, each decoupled task
can be easily parallelized in balance without being constrained by the caller-callee boundary, achieving a high
potential speedup.
We implement Octopus as a tool and evaluate it over 15 real-world programs. It is shown that Octopus

achieves the highest speedup on a 40-core workstation. On average, it achieves 123.1× speedup to the state-
of-the-art (SOTA) parallel value-flow analyzer Coyote under the 40-thread setting. Besides, the mostly-linear
speedup is observed when providing more threads. The evaluation also shows that Octopus occupies almost
all CPU cores during the whole analysis process. We also estimate and prove the lower bound of the potential
speedup of each of the three subtasks theoretically. The Octopus’s implementation is officially landed at Ant
Group, dramatically accelerating the nightly code scan of FinTech applications. To summarize, this paper makes
the following contributions:
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1. void foo(@NotNull int* c) {
2. int *a = NULL;
3. int *b = 𝜙1 ? bar(a)
4. : baz(a);
5. int *d = baz(c);
6. *b = 2; *d = 2;
7. }

8. int* bar(int* p) {
9. int* f = p, g = NULL;
10. return 𝜙2 ? f : g;
11. }

12. int* baz(int* q) {
13. int* i = 𝜙3 ? q : NULL;
14. int* h = 𝜙4 ? i : q;
15. return h;
16. }

(a) Code Example
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Fig. 1. A motivating example of Octopus. To simplify the example, we omit the caller of the function foo, which will never

pass a NULL value to the parameter 𝑐 at line 1, whose notation is following [21], where the black solid arrows (“→”) represent

value-flow edges, dashed curved arrows (“d”) represent value-flow segments, and text enclosed in a box (“ 𝑣𝑖 ”) denotes the

realizable path conditions between two nodes.

• We propose a novel concept of the realizability decomposition and the value-flow segment graph to support
the efficient parallelization of realizable path condition collection.
• We design a parallel algorithm to collect realizable path conditions with high potential speedup, benefiting
various clients, such as NPD detection and taint analysis.
• We implement our approach as a tool named Octopus, which outperforms the SOTA parallel value-flow
analysis, accelerating the NPD detection by 123.1× on average with 40 physical cores.
• We sketch the proofs for the soundness and completeness of our approach and estimate the lower bound of
the potential speedup theoretically.

2 OCTOPUS IN A NUTSHELL

In this section, we motivate the problem of path-sensitive value-flow analysis with an example, demonstrate the
design of our approach, and highlight its key merits at the end.
Motivating Example. Figure 1a shows a code snippet with three functions. The program contains two NPD

bugs, which are caused by the dereference of the pointers 𝑏 and 𝑑 at line 6. For example, the NULL value returned
by the function bar and baz can be propagated to the variable 𝑏 at line 3, which is dereferenced at line 6. Notably,
the way of the value propagation can be different under different path conditions. As depicted in Figure 1b,
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the value propagation of the actual parameter 𝑝 diverges in different branches at line 10 inside function bar. In
addition, the variable 𝑐 is also passed to a call instruction at line 5 calling function baz, which cannot finally
constitute a NULL pointer dereference, as the parameter 𝑐 is never assigned with NULL value.

Motivated by the NPD detection, we follow the methodology of value-flow analysis in [11, 53, 55], which first
constructs a guarded value-flow graph of the program and then finds bugs via graph traversals. Figure 1b shows
the guarded value-flow graph of the program in Figure 1a. Specifically, the framed nodes with NULL indicate the
NULL values at different program locations as the sources, while 𝑏6 and 𝑑6 are regarded as a sink. For example, we
can find value-flow paths from the source to the sink that may lead to the NPD bug. To address context sensitivity,
we need to ensure that the value-flow path is realizable, meaning that the contexts of all call sites, formulated as
label strings, are realizable under Dyck-CFL [47]. For example, the value-flow path (NULL2, 𝑎2, 𝑎3, 𝑝8, 𝑓9, 𝑓10, 𝑏3, 𝑏6)
is realizable while another (NULL2, 𝑎2, 𝑎4, 𝑞12, ℎ13, ℎ15, 𝑑5, 𝑑6) is not1. Apart from the realizability, the bug only
exists when the disjunction of the conditions of realizable paths from a source to a sink is satisfiable. That is, we
must compute the path condition Ψ(NULL2, 𝑏6) shown in Figure 1d when considering NULL as the source and 𝑏6
as the sink. If the answer is 𝑠𝑎𝑡 , we conclude such a bug exists.
Tabulation-based Approach. Existing efforts often adopt tabulation-based methods to detect such bugs as

they have been proven to have cubic-time complexity [47] and can easily adopt parallelism [49, 55]. In particular,
the tabulation-based approach analyzes the program by functions in a topological order on the call graph. That is
because analyzing one function often requires reachability information when analyzing its callees. Consider the
motivating example program in Figure 1a. We cannot discover the fact that the value of the variables 𝑎 at lines 3
and 4 can reach the value of the variable 𝑏 at line 4 until we analyze the functions bar and baz. Therefore, the
tabulation-based approach often analyzes and summarizes the callee first so the caller can reuse the results.
According to this intuition, many techniques [1, 55] use parallel programming to improve the scalability

of tabulation-based analysis. Their key idea is that when analyzing the callee functions without caller-callee
relations can be analyzed in parallel. In particular, these methods first analyze functions bar and baz. Using the
symbol; to denote if two values are reachable, the tabulation-based analysis generates the following summaries:

➀ (𝑝8 ; 𝑓10): The formal argument of function 𝑏𝑎𝑟 can propagate its value to the return value.
➁ (NULL9 ; 𝑔10): The NULL value of function 𝑏𝑎𝑟 can propagate to the return value.
➂ (𝑞12 ; ℎ15): The formal argument of function 𝑏𝑎𝑧 can propagate its value to the return value.
➃ (NULL13 ; ℎ15): The NULL value of function 𝑏𝑎𝑧 can propagate to the return value.

Next, it analyzes the function foo by a graph traversal on the guarded value-flow graph. Since there is a NULL
pointer assigned to the variable 𝑎 at line 2, by inlining the above summaries ➀ and ➂, we further identify four
potential NPD value-flows and a new summary ➄:

❶ NULL2, 𝑎3, (𝑝8 ; 𝑓10)bar, 𝑏3, 𝑏6 ❷ NULL2, 𝑎3, (𝑞12 ; ℎ15)baz, 𝑏3, 𝑏6
❸ (NULL9 ; 𝑔10)bar, 𝑏3, 𝑏6 ❹ (NULL13 ; 𝑖14)baz, 𝑏3, 𝑏6
➄ 𝑐1, 𝑐5, (𝑞12 ; ℎ15)baz, 𝑑5, 𝑑6

With all these paths collected, the analysis will generate the path conditions for realizable paths and use a solver
to determine their path feasibility, which finally indicates whether a bug exists. For instance, the path condition
of ❶ is 𝜙1 ∧𝜙2. Since there is no NULL value passing to 𝑐 , the redundant summary ➄ is generated when analyzing
the callers of foo.

Notably, the above approaches can first simultaneously analyze the two functions bar and baz in parallel, but
after that, they can allocate only one single thread to analyze the function foo. In such functional dependencies,
it suffers from the unbalance issue, where the concurrent analysis task cannot occupy all CPU cores, preventing
1The former forms a label string (3 )3, denoting that the value is passing to a function call to bar at line 3 and returns to the same location,
but the latter yields a label string (4 )3 that does not belong to Dyck-CFL.
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Fig. 2. The overview of Octopus

a high degree of parallelism. Although there are some enhancements [55] that can simultaneously summarize
the ➀-➃ in parallel, its potential speedup is still constrained by the caller-callee relations. In addition, some
additional value-flows (e.g., ➄) are collected during the bottom-up summary inlining, which will never reach
from an NPD source, resulting in summary redundancy.

Our Approach. To bridge the research gap, we introduce the notion of realizability decomposition to parallelize
the path-sensitive analysis in three subtasks. Basically, we attempt to decompose the condition collection of
realizable paths from the realizability reasoning. More specifically, giving the observation that realizable value-
flow paths are concatenated via either formal or actual parameters/return values, we introduce the notion
of value-flow segment to summarize intraprocedural value-flow paths. With this abstraction, we propose a novel
graph representation named value-flow segment graph, such that any realizable path on the value-flow segment
graph represents several realizable paths in the guarded value-flow graph. Such decomposition also enables load
balance in parallelization since both the segment collection and concatenation can be parallelized effectively.
Owing to the above benefits, the realizable path conditions can be collected in parallel. Based on the above idea,
our parallel algorithm is sketched with three stages, of which the workflow is shown in Figure 2.
• First, we simultaneously traverse each function’s guarded value-flow graphs to summarize intraprocedural
paths with value-flow segments. For instance, in the function bar in Figure 1a, we obtain five value-flow
segments displayed in blue dashed arrows in Figure 1b. By collecting all the value-flow segments and
concatenating them using interprocedural edges from the original guarded value-flow graph, we can
construct its corresponding value-flow segment graph (Figure 1c).
• Second, we explore the value-flow segment graph in parallel to retrieve all the realizable paths, where each
realizable segment path summarizes concrete realizable value-flow paths. For example, we discover the

realizable segment paths like ❶
(3−→❹

)3−→❽ in Figure 1c, while discarding segment paths like ❷
(4−→❻

)5−→❾ due
to its unrealized strings of edge labels.
• Third, we parallelize the path condition collection from the realizable segment paths and determine
their path feasibility of particular source-sink pairs by an SMT solver. For example, the realizable path
conditions (𝜙1∧𝜙2)∨(¬𝜙1∧(¬𝜙4∨(𝜙3∧𝜙4))) for (NULL2, 𝑏6) comes from the disjunction of path conditions
from two realizable segment paths: ❶→❹→❽ and ❷→❻→❽.

Based on the collected realizable path condition, we can further concurrently solve the realizable path conditions
and report them as bugs if satisfiable.

Benefits. Due to our technical design, our approach has the following benefits, promoting its practical value
in analyzing large-scale programs.
• Low redundancy: The abstraction of value-flow segments foresees underlying value-flow paths that can
reach sinks. Therefore, the reasoning of realizability and the collection of path conditions are only conducted
on segment paths that originate from the sources or reach the sinks.
• High potential speedup: Each subprocedure achieves balanced parallelism with high potential speedup. The
first and the third subtasks can be parallelized at the function level since the computations mainly occur
in each function independently. Besides the second task, formulated as the path search problem, can be
efficiently solved by adopting an existing parallel graph algorithm with high speedup [29, 44].
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Program 𝑃 := 𝐹+
Function 𝐹 := 𝑓 (𝑣1, 𝑣2, . . .){ 𝑆 ; }

Statement 𝑆 := 𝑣1 = 𝑙 | 𝑣1 = 𝑣2 | 𝑣1 = 𝑣2 ⊕ 𝑣3
| 𝑣1 .𝑎 = 𝑣2 | 𝑣1 = 𝑣2.𝑎 | 𝑣1 = ∗ 𝑣2 | ∗ 𝑣1 = 𝑣2

| 𝑆1; 𝑆2 | if (𝑣1 ⊙ 𝑣2){ 𝑆1; } else { 𝑆2; }
| 𝑣1 = 𝑓 (𝑣1, 𝑣2, . . .) | return 𝑣

Arithmetic ⊕ := + | − | × | ÷
Comparison ⊙ := ≡ | ≠ | > | <

Variable 𝑉 := 𝑣1 | 𝑣2 | · · ·
Field 𝐴 := 𝑎1 | 𝑎2 | · · ·

Literal 𝐿 := NULL | 𝑙1 | 𝑙2 | · · ·

Fig. 3. Language syntax

Notably, we do not only partially relax caller-callee dependencies via discovering certain types of indepen-
dent summary as in previous work [55]. Instead, we relax the dependencies completely via the parallel
collection of value-flow segments at the function level. In this manner, superior scalability can be achieved
through a high degree of parallelism.

3 PROBLEM FORMULATION

This section presents the basic preliminaries (§ 3.1), formulates the realizable path condition collection problem
(§ 3.2), and states the central issue to be solved in this work (§ 3.3).

3.1 Preliminaries

In what follows, we discuss the program syntax and the guarded value-flow graph as the preliminaries.
Syntax. Figure 3 formulates our analysis using a call-by-value language [45]. The semantics of the statements

are standard. Following many existing efforts [53, 55], we assume that the program is in SSA form such that
every variable is defined only once [16]. We unroll loops a fixed number of times, following the settings of many
static analyzers [11, 53] and bounded model checkers [28].

Guarded Value-Flow Graph. For a given program, we say the value of a variable 𝑎 flows to a variable 𝑏 if the
value of 𝑎 propagates to 𝑏 directly (via assignments, such as 𝑏 = 𝑎) or indirectly (via indirect dereference, such as
∗𝑐 = 𝑎;𝑑 = 𝑐;𝑏 = ∗𝑑 and 𝑐.𝑓 = 𝑎;𝑑 = 𝑐;𝑏 = 𝑑.𝑓 ). We adopt existing field-sensitive pointer analyses [32, 53] to
resolve pointer relations and covert the indirect value propagation to direct assignments. To depict the value
propagation, we construct a guarded value-flow graph, of which an edge abstracts how a value at a program
location can be propagated to another under a specific condition. The conditions on edges is generated via
existing quasi-path-sensitive analysis [53].

Definition 3.1. (Guarded Value-Flow Graph) The guarded value-flow graph (GVFG) of a program 𝑃 is a labeled
directed acyclic graph 𝐺 = (𝑉 , 𝐸,L,Φ), where
• 𝑣@𝑠 ∈ 𝑉 denotes the value 𝑣 defined at the statement 𝑠 .
• (𝑣𝑖@𝑠𝑖 , 𝑣 𝑗@𝑠 𝑗 ) ∈ 𝐸 indicates that the value 𝑣𝑖 is passed to 𝑣 𝑗 from the statement 𝑠𝑖 to 𝑠 𝑗 .
• L maps each edge 𝑒 = (𝑣𝑖@𝑠𝑖 , 𝑣 𝑗@𝑠 𝑗 ) to a label 𝑐 , where
– 𝑐 is (𝑘 or )𝑘 if 𝑒 ∈ 𝑉ap ×𝑉fp or 𝑒 ∈ 𝑉fr ×𝑉ar, respectively. 𝑘 is a unique id of the call site.
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– Otherwise, 𝑐 is 𝜀, where 𝜀 is an empty string.
Here, 𝑉fp,𝑉fr ⊆ 𝑉 contain the formal parameters and return values, respectively. 𝑉ap,𝑉ar ⊆ 𝑉 contain the
actual parameters and return values, respectively. These sets also include the aforementioned auxiliary
variables, which model the access and the modification of pointers and fields of structures.
• Φ maps each edge 𝑒 = (𝑣𝑖@𝑠𝑖 , 𝑣 𝑗@𝑠 𝑗 ) to a constraint 𝜙 over 𝑉 , indicating that the value flow occurs only
when 𝜙 is satisfied.

Intuitively, we can obtain a GVFG𝐺 𝑓 for each function 𝑓 and then construct the GVFG for a whole program 𝑃

by concatenating all the GVFGs of its functions. Specifically, we can add the edges between the actual/formal
parameters/return values with the corresponding labels. As mentioned above, we formulate the problem upon
the programs in SSA form. For simplification, we use 𝑣𝑖 to indicate a value on GVFG for shorthand and omit the
statement defining the value. In the rest of the paper, we demonstrate the examples with the simplified notation.

Example 3.2. Figure 1b shows the GVFG of the program in Figure 1a. Functions bar and baz are invoked by foo.
The edges (𝑎3, 𝑝8), (𝑎4, 𝑝8), and (𝑎4, 𝑞12) are labeled with (3, (4, and (5, respectively, indicating that the values
of actual parameters are passed to the formal parameters at lines 3, 4, and 5, respectively. The edges (𝑓10, 𝑏3),
(𝑔10, 𝑏3), (ℎ15, 𝑏3), (𝑖14, 𝑏3), and (ℎ15, 𝑑5) indicate the value flows from formal return values to their receivers. For
clarity, we omit the empty label 𝜀 for the edges in the GVFG.

3.2 Realizable Path Condition Collection

Given the GVFG of a program and a set of sources and sinks, we can find the paths between the sources and
sinks via graph traversal. To filter away spurious paths which cannot occur in the executions, it is also crucial to
constrain the value propagation by investigating the conditions of realizable paths. Formally, we formalize the
problem of the realizable path condition collection as follows.

Definition 3.3. (Realizable Path Condition Collection) Let 𝐺 = (𝑉 , 𝐸,L,Φ) be a GVFG and 𝑉src,𝑉sink be the
sources and sinks of interest, respectively. A problem instance of realizable path condition collection, denoted as
C = (𝐺,𝑉src,𝑉sink), is to compute a mapping Ψ:

Ψ(𝑣src, 𝑣sink) =
∨

𝑝∈P(𝑣src,𝑣sink )
(Φ(𝑣1, 𝑣2) ∧ Φ(𝑣2, 𝑣3) ∧ · · · ∧ Φ(𝑣𝑛−1, 𝑣𝑛)), (𝑣src, 𝑣sink) ∈ 𝑉src ×𝑉sink

Here, the path set P(𝑣src, 𝑣sink) := {𝑝 : (𝑣1, · · · , 𝑣𝑛) | (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸, R(𝑝) ∈ Dyck-CFL, 𝑣1 = 𝑣src, 𝑣𝑛 = 𝑣sink}.
R(𝑝) := L(𝑣1, 𝑣2) ◦ · · · ◦ L(𝑣𝑛−1, 𝑣𝑛) is the realized string of the path 𝑝 . Particularly, Ψ(𝑣src, 𝑣sink) is the realizable
path condition for the source-sink pair (𝑣src, 𝑣sink).

For each source-sink pair (𝑣src, 𝑣sink), the collected path condition Ψ(𝑣src, 𝑣sink) poses restrictions on the paths
from two aspects. First, the realized string belongs to the Dyck-CFL, which ensures context sensitivity. Second,
the realizable path condition is a logical disjunction of the conditions of multiple realizable paths, which start
from 𝑣src and end with 𝑣end, achieving the path sensitivity of the analysis. In practice, realizable path condition
collection generally enables a wide range of value-flow analysis clients [19, 24, 36, 38]. For example, detecting
value-flow bugs, such as NULL pointer dereference [52, 68], memory leaks [11, 65], taint vulnerabilities [3, 4, 55],
require specific instantiations of 𝑉src and 𝑉sink. Without loss of generality, we adopt the realizable path condition
collection of the NPD detection as an example in the rest of the paper.

Example 3.4. Given the GVFG 𝐺 = (𝑉 , 𝐸,L,Φ), the NPD detection can be reduced to collecting the conditions
of realizable paths, for the instance CNPD = (𝐺,𝑉src,𝑉sink), where

𝑉src = {𝑣 ∈ 𝑉 | mayNull(𝑣)}, 𝑉sink = {𝑣 ∈ 𝑉 | deref(𝑣)}
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Algorithm 1: Collecting realizable path conditions
1 Procedure collectRealizablePathCond(𝐺,𝑉src,𝑉sink):
2 Ψ← [(𝑣src, 𝑣sink) ↦→ false | (𝑣src, 𝑣sink) ∈ 𝑉src ×𝑉sink];
3 forall 𝑣1 ∈ 𝑉src do
4 𝑊𝐿 ← {(𝑣1)};
5 while𝑊𝐿 ≠ ∅ do
6 (𝑣1, . . . , 𝑣𝑛) ← poll (𝑊𝐿);
7 if 𝑣𝑛 ∈ 𝑉sink and R(𝑣1, . . . , 𝑣𝑛) ∈ Dyck-CFL :
8 Ψ(𝑣1, 𝑣𝑛) ← Ψ(𝑣1, 𝑣𝑛) ∨ (Φ(𝑣1, 𝑣2) ∧ · · · ∧ Φ(𝑣𝑛−1, 𝑣𝑛));
9 forall 𝑣𝑛+1 ∈ next(𝑣𝑛) do
10 𝑊𝐿 ←𝑊𝐿 ∪ {(𝑣1, . . . , 𝑣𝑛, 𝑣𝑛+1)};
11 return Ψ

Here, mayNull(𝑣) depicts whether 𝑣 is equal to NULL, and deref(𝑣) depicts whether 𝑣 is dereferenced. By solving
the collected condition, we can determine whether there exists a feasible path from a source to a sink, which
indicates the presence of an NPD.

3.3 Problem Statement

To solve the realizable path condition collection problem, a naive approach is to instantiate a worklist algo-
rithm [25], which is shown as Algorithm 1. For each source 𝑣1 ∈ 𝑉src, we can traverse the GVFG to collect all
the realizable value-flow paths that start with 𝑣1 and ends with a sink 𝑣𝑛 ∈ 𝑉sink. Furthermore, we can compute
the path condition for each path and create the disjunction with all the conditions of realizable paths for each
source-sink pair. Finally, the value of the mapping Ψ reveals whether or not a source can reach a sink in any
concrete execution of the program, which can guide various clients, such as value-flow bug detection.

Unfortunately, theworklist algorithm suffers exponentially huge overheadwhen analyzing large-scale programs.
First, when we compute the path conditions for intraprocedural paths, the exponential number of the paths can
result in high complexity barrier. Second, the problem becomesmore difficult when considering the interprocedural
path search along with the realizability reasoning. To improve efficiency, one typical way is to design a parallel
version of the worklist algorithm. Existing studies attempt to parallelize tabulation-based program analysis
techniques [2, 55] for performance improvement. However, the potential speedup is strictly restricted by the
caller-callee relations in the program, making the techniques suffer the load imbalance in the parallelization. To
fill the research gap, we aim to tackle the following problem in this work.

Given a GVFG 𝐺 , 𝑉src, and 𝑉sink, compute the realizable path condition Ψ(𝑣src, 𝑣sink) for each source-sink
pair (𝑣src, 𝑣sink) ∈ 𝑉src ×𝑉sink in a parallel manner, which achieves balanced parallelism for high speedup.

Roadmap. In what follows, we present a parallel algorithm for collecting realizable path conditions in the value
flow analysis. Specifically, we introduce a novel abstraction of the realizable paths (§ 4), enabling the decoupling
of the intraprocedural path exploration from the realizability reasoning. To resolve the imbalance issue, we
generate a value-flow segment graph (§ 5.1), where each value-flow segment summarizes the intraprocedural
value-flow paths. Furthermore, we parallelize the realizable segment path exploration (§ 5.2) and finally collect
realizable path conditions on demand (§ 5.3). Each stage features a high potential speedup, which ensures the
high efficiency of the overall parallel algorithm.
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4 DECOMPOSING REALIZABLE PATH CONDITIONS

In this section, we establish the fundamental decomposition of our realizable path conditions to convenience
the parallelization of the condition collection. We first present the realizability decomposition by introducing
the notion of the value-flow segment (§ 4.1), and then demonstrate the basic design of collecting realizable
path conditions with the guidance of value-flow segments (§ 4.2), which resolves the imbalance issue caused by
caller-callee relations. We also formulate the soundness and completeness of the realizability decomposition,
providing the theoretical foundation of our parallel algorithm.

4.1 Realizability Decomposition

As shown by Definition 3.3, the realizable path condition is induced by the set of realizable paths starting from
𝑣src and ending with 𝑣sink. This implies that we have to ensure the realizability of each reachable path from 𝑣src
and 𝑣sink in the path condition collection. However, it is non-trivial to guarantee the realizability of a source-sink
path in a parallel value-flow analysis. Typically, a tabulation-based analysis has to explore the paths of a callee
before analyzing its caller, which is referred to as the limits of function boundaries in [55]. Obviously, the limits of
function boundaries significantly restrict the potential speedup of parallelization. Even if we have a sufficiently
large number of threads, the efficiency of the parallel algorithm can not be further improved, which bears a low
CPU utilization.
To break the limits of function boundaries, we propose the concept of realizability decomposition, which

decouples the realizability reasoning from the intraprocedural path exploration. Specifically, we observe that the
intraprocedural value-flow paths form the realizable paths across the functions via the concatenation. This suggests
that there are actually three counterparts in realizable path condition collection: (1) Explore the intraprocedural
paths of each function; (2) Enumerate all the possible ways of concatenating the intraprocedural value-flow paths
to enforce the realizability. (3) Construct the path conditions by utilizing the relevant intraprocedural value-flow
paths and the ways of concatenation. Notably, searching intraprocedural paths has already born the exponential
time complexity, while determining reachability is much cheaper. Therefore, we can first use the reachability of
specific nodes to summarize the intraprocedural paths in the GVFG and postpone the exploration of the relevant
value-flow paths and the collection of path conditions. Formally, we propose a critical notion of the value-flow
segment to summarize intraprocedural paths and depict the reachability relation.

Definition 4.1. (Value-Flow Segment) Given a function 𝑓 and its GVFG 𝐺 𝑓 , a value-flow segment ℓ : 𝑣1 ; 𝑣2 is
the shortcut summarizing the value-flow paths from 𝑣1 to 𝑣2, where 𝑣1 ∈ (𝑉 𝑓

src
∪𝑉 𝑓

fp
∪𝑉 𝑓

ar
) and 𝑣2 ∈ (𝑉 𝑓

sink
∪𝑉 𝑓

fr
∪𝑉 𝑓

ap
).

Here 𝑉 𝑓
src

is the set of sources specified in 𝐺 𝑓 , and other notations follow similar meanings as in Definition 3.1.
We denote the set of the value-flow segments in 𝑓 by 𝑆 𝑓 .

Intuitively, a value-flow segment depicts the reachability between 𝑣1 and 𝑣2 without enumerating the paths.
The set 𝑆 𝑓 actually abstracts the semantics of a single function, showing how the values of interest are generated
and propagated. If a value-flow segment starts from a source 𝑣1 ∈ 𝑉 𝑓

src
or ends with a return value 𝑣2 ∈ 𝑉 𝑓

fr
, it

can be used to form the value-flow paths across different functions. Also, it is worth noting that the value-flow
segments in different functions are independent since they are essentially abstractions of the GVFGs of single
functions. This property permits us to parallelize the value-flow segment generation at the function level, which
ensures a high potential speedup of summarizing intraprocedural paths.

Example 4.2. Consider Figure 1a and we aim to detect NPD bugs. There are nine value-flow segments in the
three functions. Let us denote the value-flow segments labeled with ❶, ❷, ❹, ❻, and ❽ by ℓ1, ℓ2, ℓ4, ℓ6, and ℓ8,
respectively. The rest of the paper follows similar notations. Figure 4a shows the intraprocedural value-flow
paths summarized by the four value-flow segments. Specifically, ℓ1 summarizes the path (NULL2, 𝑎2, 𝑎3), showing
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Fig. 4. Examples of value-flow segments and realizable paths derived from segment concatenation.

that the NULL value at line 2 is used as the actual parameter of bar at line 3 and is similar for ℓ2. The value-flow
segments ℓ4 and ℓ5 summarize the value-flow paths from the parameter to the two return values of bar and baz,
respectively. ℓ8 summarizes the path (𝑏3, 𝑏6), and 𝑏6 is further dereferenced at line 6.

With the value-flow segments, we can determine how any realizable path connecting a source to a sink forms
in the GVFG. For each function, the values of interest can only be propagated to other functions via function calls
and returns. When an edge connects the function 𝑔’s formal parameter 𝑣 and the function 𝑓 ’s actual parameter 𝑢,
the value-flow segments in the two functions can form a longer value-flow path. Similar propagation also occurs
upon formal and actual return values. Based on this intuition, we formalize the segment concatenation as follows.

Definition 4.3. (Segment Concatenation) Given the GVFG 𝐺 = (𝑉 , 𝐸,L,Φ) and a string 𝑠 , the value-flow
segments ℓ𝑓 := 𝑣

𝑓

1 ; 𝑣
𝑓

2 ∈ 𝑆 𝑓 and ℓ𝑔 := 𝑣
𝑔

1 ; 𝑣
𝑔

2 ∈ 𝑆𝑔 are concatenable under 𝑠 if and only if 𝑒 = (𝑣 𝑓2 , 𝑣
𝑔

1) ∈ 𝐸 and
𝑠 ◦ L(𝑒) belongs to the extended Dyck-CFL [51]. In other sections of the paper, we refer to Dyck-CFL as the
extended Dyck-CFL.

Example 4.4. Consider the function bar invoked by the function foo in Figure 1a. ℓ1 and ℓ4 are concatenable under
(3, and ℓ4 and ℓ8 are concatenable under )3. Therefore, they form a realizable path from NULL2 to 𝑏6, which reveals
a possible NPD bug at line 6. For other value-flow segments, we can also conduct the segment concatenation and
obtain the other realizable paths shown in Figure 4.

The segment concatenation enables a compositional approach to identify realizable paths. Using the value-
flow segments of different functions, we can always recover all realizable paths connecting sources and sinks.
To solidify the theoretical foundation, we formulate the following two theorems, stating the soundness and
completeness of the realizability decomposition, respectively.

Theorem 1. (Soundness) Let 𝐺 = (𝑉 , 𝐸,L,Φ) be the GVFG of a given program 𝑃 . If we select 𝑘 value-flow
segments ℓ𝑖 : 𝑢𝑖 ; 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑘), which satisfy the following conditions:
• 𝑢1 = 𝑣src and𝑤𝑘 = 𝑣sink;
• ℓ𝑖 and ℓ𝑖+1 are concatenable under L(𝑤1, 𝑢2) ◦ · · · ◦ L(𝑤𝑖−1, 𝑢𝑖 ).

then 𝑝1 ⊎ 𝑝2 ⊎ · · · ⊎ 𝑝𝑘 is a realizable path connecting 𝑣src and 𝑣sink, where 𝑝 𝑗 is an intra-procedural value-flow
path from 𝑢 𝑗 to𝑤 𝑗 . The operator ⊎ is the concatenation operator of two value-flow paths 𝑝 : (𝑣1, 𝑣2, · · · , 𝑣𝑛) and
𝑝′ : (𝑣 ′1, 𝑣 ′2, · · · , 𝑣 ′𝑛′ ), where 𝑣𝑛 = 𝑣 ′1.

Proof. For each ℓ𝑖 : 𝑢𝑖 ; 𝑤𝑖 , we have the intra-procedural value-flow path 𝑝𝑖 connecting 𝑢𝑖 and𝑤𝑖 , which is
summarized by ℓ𝑖 . Based on Definition 4.3,𝑤𝑖 can reach 𝑢𝑖+1 because ℓ𝑖 and ℓ𝑖+1 are concatenable. Based on the
transitivity of reachability, 𝑣src and 𝑣sink are reachable. Also, ℓ𝑘−1 and ℓ𝑘 are realizable under L(𝑤1, 𝑢2) ◦ · · · ◦
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L(𝑤𝑘−2, 𝑢𝑘−1). Based on Definition 4.3, the realized string R(𝑝1⊎𝑝2⊎· · ·⊎𝑝𝑘 ) = L(𝑤1, 𝑢2) ◦ · · ·◦L(𝑤𝑘−2, 𝑢𝑘−1) ◦
L(𝑤𝑘−1, 𝑢𝑘 ) is in the extended Dyck-CFL. Therefore, 𝑝1 ⊎ 𝑝2 ⊎ · · · ⊎ 𝑝𝑘 is a realizable path. □

Theorem 2. (Completeness) Consider any realizable path 𝑝 := 𝑝1 ⊎𝑝2 ⊎ . . .⊎𝑝𝑘 connecting 𝑣src and 𝑣sink, where
𝑝𝑖 is an intraprocedural value-flow path for each 1 ≤ 𝑖 ≤ 𝑘 . Then we can always find the value-flow segments
ℓ𝑖 : 𝑢𝑖 ; 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑘), such that
• 𝑝𝑖 starts with 𝑢𝑖 and ends with𝑤𝑖 ;
• ℓ1 = 𝑣src ; 𝑤1 and ℓ𝑘 = 𝑢𝑘 ; 𝑣sink, where𝑤1, 𝑢𝑘 ∈ 𝑉 ;
• ℓ𝑖 and ℓ𝑖+1 are concatenable under L(𝑤1, 𝑢2) ◦ · · · ◦ L(𝑤𝑖−1, 𝑢𝑖 ). (revised: “L(𝑤0, 𝑢1) = 𝜀” removed)

Proof. If the theorem does not hold, we can find a value-flow path 𝑝∗ : 𝑣∗
src

; 𝑣∗
sink

which is not a concatenation
of a finite number of value-flow segments. Consider that 𝑣∗

src
lies in the GVFG of the function 𝑓1. We remove the

successive nodes in the prefix of 𝑝∗ which are in the GVFG nodes of 𝑓1, and obtain an empty value-flow path
or another value-flow path 𝑝∗ : 𝑣∗2 ; 𝑣∗

sink
, where 𝑣∗2 ∈ 𝑉fp ∪𝑉ar. In the first case, 𝑝∗ must be summarized by a

value-flow segment of 𝑓1, which contracts with our assumption. In the second case, we obtain a shorter value-flow
path 𝑝∗ which is not a concatenation of the paths summarized by value-flow segments. We repeat the removal
for the second case, while it cannot be repeated infinite times due to the finite length of 𝑝∗. The assumption does
not hold, and thus, the theorem is proved. □

Theorems 1 and 2 establish the theoretical foundation of our realizability decomposition. No matter how
value-flow paths concatenate and in which order value-flow segments are generated, we can always examine
the same set of realizable paths P(𝑣src, 𝑣sink) in the collection of path conditions. Hence, the correctness of the
parallelization can be theoretically guaranteed.

4.2 From Value-Flow Segments to Realizable Path Conditions

As demonstrated in § 4.1, value-flow segments summarize value-flow paths in single functions, which enables
us to determine how realizable paths are formed across multiple functions via concatenation. Once we obtain
the concatenation of the value-flow segments, we can collect the path condition of the intraprocedural paths
summarized by value-flow segments and create their logical disjunctions in a parallel manner. Hence, we only
need to focus on the parallelization of identifying how to concatenate the value-flow segments. Based on intuition,
we propose a novel abstraction named the value-flow segment graph as follows.

Definition 4.5. (Value-Flow Segment Graph) Given a program 𝑃 and its GVFG 𝐺 = (𝑉 , 𝐸,L,Φ), the value-flow
segment graph (VFSG) of 𝑃 is 𝐺 = (𝑉 , 𝐸, L), where
• The segment set 𝑉 =

⋃
𝑓 ∈𝑃 𝑆 𝑓 contains all the value-flow segments in 𝐺 .

• The set 𝐸 contains the edges of the VFSG, and 𝐿 maintains the label of each edge. For each ℓ𝑖 = 𝑣𝑖 ; 𝑢𝑖 and
ℓ𝑗 = 𝑣 𝑗 ; 𝑢 𝑗 , we have (ℓ𝑖 , ℓ𝑗 ) ∈ 𝐸 andL(ℓ𝑖 , ℓ𝑗 ) = L(𝑢𝑖 , 𝑣 𝑗 ) if and only if (𝑢𝑖 , 𝑣 𝑗 ) ∈ 𝐸∩((𝑉fp×𝑉ap)∪(𝑉fr×𝑉ar)).

Particularly, a value-flow segment ℓ1 : 𝑣1 ; 𝑣2 ∈ 𝑉 is a source in the VFSG if and only if 𝑣1 ∈ 𝑉src ⊆ 𝑉 , while a
value-flow segment ℓ2 : 𝑢1 ; 𝑢2 ∈ 𝑉 is a sink in the VFSG if and only if 𝑢2 ∈ 𝑉sink ⊆ 𝑉 . The sets of sources and
sinks in the VFSG are denoted as 𝑉src and 𝑉sink, respectively.

Intuitively, the VFSG abstracts away how the values are propagated within single functions and only exposes
the value propagation across the functions. More concretely, it leverages a value-flow segment to summarize the
intraprocedural value-flow paths with the same start and end points. Based on the VFSG, we can establish the
connection between realizable paths in the GVFG with a specific segment path in the VFSG, of which the realized
string is in the extended Dyck-CFL. According to this intuition, we define the notion of the realizable segment
path.
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Definition 4.6 (Realizable Segment Path). A segment path 𝑝 = (ℓ1, ℓ2, . . . , ℓ𝑛) in the VFSG 𝐺 is a realizable
segment path if and only if L(ℓ1, ℓ2) ◦ · · · ◦ L(ℓ𝑛−1, ℓ𝑛) belongs to the extended Dyck-CFL.

A realizable segment path is a more compact representation of the realizable paths in the GVFG. According to
Theorem 2 and Definition 4.5, each realizable path can be projected to the realizable segment path in the VFSG.
Meanwhile, Theorem 1 indicates that by replacing each value-flow segment with an intraprocedural value-flow
path, any realizable segment path can induce a set of realizable paths. Therefore, the VFSG enables us to resolve
the realizability from a high-level perspective, blurring the details of single functions and focusing solely on
possible realized strings of realizable segment paths. In this way, we can determine the set of realizable paths in
Definition 3.3 for the condition collection.

Example 4.7. Figure 1c shows the VFSG of the program in Figure 1a. The segments ℓ1, ℓ2 are sources on VFSG,
while the segment ℓ8 is a sink. Each segment summarizes one or more intraprocedural value-flow paths with
corresponding path conditions. We notice that there exist two realizable segment paths starting from ℓ1 and
from ℓ2 and end with ℓ8 in the VFSG. According to the concatenation process shown in Figure 4, we can recover
two realizable segment paths (ℓ1, ℓ4, ℓ8) and (ℓ2, ℓ6, ℓ8) as well as their corresponding path conditions 𝜙1 ∧ 𝜙2 and
¬𝜙1 ∧ (¬𝜙4 ∨ (𝜙3 ∧ 𝜙4)), respectively. Since both ℓ1 and ℓ2 originates from the same source value NULL2, we can
obtain the realizable path condition for the source-sink pair (NULL2, 𝑏6) by the disjunction the above conditions:
(𝜙1 ∧ 𝜙2) ∨ (¬𝜙1 ∧ (¬𝜙4 ∨ (𝜙3 ∧ 𝜙4))).
Owning to our realizability decomposition, we decouple the path condition collection from the realizability

reasoning. Such a separation is beneficial for the following three reasons:
• First, the decomposition enables us to foresee the possible ways of concatenating intraprocedural paths to
a realizable counterpart without enumerating them, thus, avoiding examining redundant intraprocedural
value-flow paths. In Figure 1, for instance, we do not explore intraprocedural paths summarized by ℓ6, as it
can not form any realizable segment path.
• Second, the realizability reasoning only happens once when multiple value-flow paths share the same
realized strings, which can effectively avoid redundancy. For example, once we obtain a segment path
(ℓ1, ℓ6, ℓ8), we examine the realized string “(4)4” and find that it belongs to the extended Dyck-CFL. We do
not need to check the string again for different value-flow paths summarized in a segment path, which can
further improve efficiency.
• Third, the decoupled computation can be efficiently parallelized in a balanced manner, achieving a high
speedup. In particular, computing the value-flow segments and collecting path conditions with the guidance
of realizable segment paths can be easily parallelized in a balanced manner because each function and
segment can be processed independently.

In what follows, we provide the technical details of our parallel algorithm, including the value-flow segment
graph generation (§ 5.1), the realizable segment path search (§ 5.2), and the path condition collection (§ 5.3), all of
which can be parallelized with the high potential speedup.

5 PARALLEL ALGORITHM

This section demonstrates the parallel algorithm Octopus to collect realizable path condition (§ 5.1–§ 5.3), and
summarizes the benefits as discussions (§ 5.4).

5.1 Value-Flow Segment Graph Generation

According to the realizability decomposition proposed in §4, we know that any realizable path in the GVFG can
be projected to a realizable segment path in the VFSG. This implies that the realizable segment paths in the VFSG
express all the way how intraprocedural paths form the realizable paths in the GVFG. Meanwhile, the realizable
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Algorithm 2: Generating value-flow segment graph
1 Procedure genVFSegmentGraph(𝑃,𝐺 = (𝑉 , 𝐸,L,Φ)):
2 𝑉 ← ∅; 𝐸 ← ∅; L ← ⊥;
3 foreach 𝑓 ∈ 𝑃 do in parallel
4 (𝑉𝑓 , 𝐸𝑓 ) ← getGVFGForFunction(𝐺, 𝑓 );
5 foreach 𝑣𝑖 ∈ 𝑉 𝑓

src
∪𝑉 𝑓

fp
∪𝑉 𝑓

ar
do in parallel

6 foreach 𝑣 𝑗 ∈ visitedInBFS(𝐺 𝑓 , 𝑣𝑖 ) :
7 if 𝑣 𝑗 ∈ 𝑉 𝑓

sink
∪𝑉 𝑓

ap
∪𝑉 𝑓

fr
:

8 𝑉 ← 𝑉 ∪ {𝑣𝑖 ; 𝑣 𝑗 };
9 foreach (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 and L(𝑣𝑖 , 𝑣 𝑗 ) ≠ 𝜀 do in parallel
10 if ℓ1, ℓ2 ∈ 𝑉 and last(ℓ1) = 𝑣𝑖 and first(ℓ2) = 𝑣 𝑗 :
11 𝐸 ← 𝐸 ∪ {ℓ1 ; ℓ2};
12 L(ℓ1, ℓ2) ← L(𝑣𝑖 , 𝑣 𝑗 );
13 return 𝐺 ← (𝑉 , 𝐸,L);

segment paths summarize context-sensitive analysis results and pose the potential of path condition recovery.
Based on this intuition, we concentrate on efficiently generating the VFSG first, which serves as the essential
ingredient for further path exploration.
Notably, we realize that value-flow segments of different functions do not depend on each other, making

function-level parallelism easy to achieve. Leveraging the independence of the value-flow segments in different
functions, we propose the parallel algorithm to construct the VFSG, which is formulated as Algorithm 2. Specifi-
cally, it takes as input a program and its GVFG and returns the VFSG of the program. It generates value-flow
segments for each function simultaneously with different workers. For each function 𝑓 , a worker traverses the
GVFG 𝐺 𝑓 from each value 𝑣𝑖 in 𝑉

𝑓
src
∪𝑉 𝑓

fp
∪𝑉 𝑓

ar
, and determines whether any value 𝑣 𝑗 in 𝑉

𝑓

sink
∪𝑉 𝑓

ap
∪𝑉 𝑓

fr
can be

reached. This can be achieved by standard breath-first search (BFS), initialized as visitedInBFS function, which
returns the values in a BFS order. Finally, it collects all the value-flow segments in any single function (lines 3–8).
After obtaining the value-flow segments, it connects any pair of segments ℓ1 and ℓ2 with an edge labeled with
L(𝑣𝑖 , 𝑣 𝑗 ), where 𝑣𝑖 and 𝑣 𝑗 are the end point and start point of the paths summarized by ℓ1 and ℓ2, respectively
(lines 9–12). In this way, the constructed VFSG preserves the calling context of the program 𝑃 , enabling us to
achieve context sensitivity in the subsequent stages.

Example 5.1. When exploring segments of the function bar in Figure 1a for NPD detection, Algorithm 2 starts
from the formal parameter 𝑝8 and finally reaches 𝑓10, yeilding a value-flow segment ℓ4 : 𝑝8 ; 𝑐10. Similarly, it
collects the other nine value-flow segments by processing the three functions in a parallel manner. By taking
the interprocedural edges and their edge labels from the original GVFG, we can construct the VFSG shown in
Figure 1c.

As shown in Algorithm 2, each function can be processed independently during the value-flow segment
generation. For a specific function 𝑓 , it also processes each pair 𝑣1 ∈ (𝑉 𝑓

src
∪𝑉 𝑓

fp
∪𝑉 𝑓

ar
) simultaneously. Besides, it

adds the edges in the VFSG by examining the edges in the GVFG parallelly. Benefiting from our fine-grained
task decomposition, we can achieve a high degree of parallelism in the VFSG generation. Formally, we provide a
theorem to show the potential speedup of Algorithm 2.
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Algorithm 3: Searching realizable segment paths

1 Procedure exploreRSPaths(𝐺 := (𝑉 , 𝐸,L)):
2 A ← ∅; 𝑛 ← 0;
3 𝐹0 ← {(ℓ) | ℓ ∈ 𝑉src};
4 R ← [𝑝 ↦→ 𝜀 | 𝑝 ∈ 𝐹0];
5 while 𝐹𝑛 ≠ ∅ do
6 𝐹𝑛+1 ← ∅;
7 foreach 𝑝 := (ℓ𝑖 , · · · , ℓ𝑗 ) ∈ 𝐹𝑛 do in parallel:
8 if ℓ𝑗 ∈ 𝑉sink then
9 A ← A ∪ {(ℓ𝑖 , · · · , ℓ𝑗 )}

10 foreach (ℓ𝑗 , ℓ𝑘 ) ∈ 𝐸 do in parallel:
11 𝑠 ← R(ℓ𝑖 , · · · , ℓ𝑗 )L(ℓ𝑗 , ℓ𝑘 );
12 if 𝑠 is realizable then
13 𝐹𝑛+1 ← 𝐹𝑛+1 ∪ {(ℓ𝑖 , · · · , ℓ𝑗 , ℓ𝑘 )};
14 R ← R[(ℓ𝑖 , · · · , ℓ𝑗 , ℓ𝑘 ) ↦→ 𝑠];
15 𝑛 ← 𝑛 + 1;
16 return A;

Theorem 3. Given a program 𝑃 and its GVFG 𝐺 = (𝑉 , 𝐸,L,Φ), the potential speedup of Algorithm 2 is
Ω( |𝑉src | · ( |𝑉 |+|𝐸 | )

𝑁𝑣+𝑁𝑒
). Here, 𝑁𝑣 and 𝑁𝑒 are the maximal numbers of vertices and edges in the GVFGs of single

functions, and |𝑉src | is the number of the sources in the GVFG 𝐺 .

Proof. First, the total work 𝑇1 includes at least two parts: (1) the traversal upon the GVFG for each source for
the value-flow segment generation; and (2) one round scan of the edge set 𝐸 and the mapping L to instantiate the
map L. Thus, we have 𝑇1 = Ω( |𝑉src | · ( |𝑉 | + |𝐸 |) + |𝐸 |). Second, the span of the work 𝑇∞ is exactly the maximal
cost of one round BFS upon the GVFG of a single function for segment generation. The span of the one round
scan of 𝐸 and L is 𝑂 (1) as it only performs a one-time query to L. Thus, we have 𝑇∞ = 𝑂 (𝑁𝑣 + 𝑁𝑒 ). Finally, the
potential speedup is 𝑇1

𝑇∞
= Ω( |𝑉src | · ( |𝑉 |+|𝐸 | )+|𝐸 |

𝑁𝑣+𝑁𝑒
) = Ω( |𝑉src | · ( |𝑉 |+|𝐸 | )

𝑁𝑣+𝑁𝑒
).

□

It is worth mentioning that Theorem 3 does not provide a tight estimation theoretically. In extreme cases
where 𝑁𝑣 = |𝑉 |, 𝑁𝑒 = |𝐸 |, the potential speedup is Ω( |𝑉src |). However, 𝑁𝑣 and 𝑁𝑒 are considered much smaller
than |𝑉 | and |𝐸 | in real-world cases, as a program is unlikely to have a function of which the size is close to the
total size of the program. Therefore, Algorithm 2 can achieve high speedup in practice. In addition, even if such
an extreme case exists, |𝑉src | is generally larger than the number of available threads of a workstation. Thus, we
can achieve maximum speedup when analyzing real-world programs.

Besides, this stage can involve redundancy since all types of value-flow segments (Definition 4.1) are collected
no matter whether they contribute to a feasible value-flow path. However, It completely relaxes the caller-callee
dependencies and brings almost maximum available parallelism compared to previous work only doing partial
relaxation [55]. In addition, such redundancy is subtle to the overall computation effort since the segment
collection is a pure reachability graph search, which is considered very efficient.
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5.2 Realizable Segment Path Search

The realizable segment paths in the VFSG depict all the possible concatenations of intraprocedural paths on the
GVFG. In what follows, we demonstrate how to parallelize the realizable segment path search in the VFSG with a
high potential speedup.
Our key idea to achieve parallelism is to blend the realizability reasoning with the conventional parallel

BFS-based algorithms [6, 31, 73]. Algorithm 3 demonstrates the technical details. Initially, we collect all the
sources on the VFSG to form the 0-length paths (line 3). Specifically, we use 𝐹𝑛 stores all the intermediate paths
with a length of 𝑛, of which the realized strings belong to the Dyck-CFL. We also introduce a mapping R to store
realized strings of the segment paths (line 4). When 𝐹𝑛 is not empty, Algorithm 3 processes each segment path
𝑝 ∈ 𝐹𝑛 in a parallel manner, which consists of two phases:
• It examines whether the last segment ℓ𝑗 in the path 𝑝 is a sink in the VFSG. If yes, it adds 𝑝 to the set of
realizable segment paths A (line 8).
• It extends the segment path 𝑝 by concatenating it with ℓ𝑘 if and only if R(𝑝)L(ℓ𝑗 , ℓ𝑘 ) is realizable, where
ℓ𝑘 is the successor of the last segment ℓ𝑗 of the segment path 𝑝 (lines 10–14).

By parallelizing the two phases, Algorithm 3 searches the segment paths by iterations until no new intermediate
path exists. Finally, A collects all realizable segment paths from 𝑉src to 𝑉sink in the VFSG.

Example 5.2. Consider the VFSG shown in Figure 1c. Initially, we collect (ℓ1), (ℓ2), (ℓ5), and (ℓ7) to form 𝐹0. After
the first round of the iteration, we have 𝐹1 = {(ℓ1, ℓ4), (ℓ2, ℓ6), (ℓ5, ℓ8), (ℓ3, ℓ6), (ℓ7, ℓ8), (ℓ7, ℓ9)}. There are already
three paths ending with the sink in 𝐹1, namely (ℓ2, ℓ6), (ℓ7, ℓ8), and (ℓ7, ℓ9). In the second round, we find that “(4)4”
is realizable while “(4)5” is not realizable, so we have 𝐹2 = {(ℓ1, ℓ4, ℓ8), (ℓ2, ℓ6, ℓ8)}. Due to ℓ8 ∈ 𝑉sink, we add the
two paths in 𝐹2 to A. Obviously, 𝐹3 is empty, as ℓ8 does not have a successor. Finally, we collect five realizable
segment paths in the VFSG and store them in A in parallel.

Here, we provide the theorem on the potential speedup of the parallel Algorithm 3.

Theorem 4. Consider the VFSG 𝐺 = (𝑉 , 𝐸,L) for a given program. The potential speedup of Algorithm 3
is Ω( |𝑉src | · ( |𝑉 |+|𝐸 | )

𝐷
), where |𝑉src | is the number of the value-flow segments starting from sources, and 𝐷 is the

largest length of the segment paths in the VFSG.

Proof. First, the total work is at least 𝑇1 = Ω( |𝑉src | · ( |𝑉 | + |𝐸 |)). This is because, we need to perform at least
one graph traversal for each source value in 𝑉src to determine whether there exists at least one segment path
from 𝑉src, while the total work can be higher there exist multiple paths reachable from a source value. Similar to
the proof of Theorem 3, we have 𝑇∞ = 𝑂 (𝐷) with a sufficient number of threads. Thus, the potential speedup of
Algorithm 3 is 𝑇1

𝑇∞
= Ω( |𝑉src | · ( |𝑉 |+|𝐸 | )

𝐷
). □

Note that, in extreme cases where |𝐷 | = 𝑂 ( |𝐸 |), we still have a potential speedup Ω( |𝑉src | · ( |𝑉 |+|𝐸 | )
𝐷

) > Ω( |𝑉src |),
which is also unlikely to be smaller than the number of available physical threads of a server. Thus, we also can
achieve maximum speedup in practice.
Essentially, Algorithm 3 fuses parallel BFS algorithms to the VFSG with realizablity reasoning, enforcing the

realized strings of the segment paths which belong to the Dyck-CFL. The realizablity reasoning does not bring
extra overhead, since we can utilize a stack to store each realized string and match the parentheses directly,
i.e., it can be done in 𝑂 (1) time for each path. Also, it is worthy noting that we only search from segments
starting from sources, and thus segments like ℓ3 will not be counted. This also removes redundancies brought by
tabulation-based methods which cannot foretell that ℓ2 will never form in a source-sink path.
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Algorithm 4: Collecting realizable path conditions.

1 Procedure collectPathCond(A,𝐺):
2 Ψ← [(𝑣src, 𝑣sink) ↦→ false | (𝑣src, 𝑣sink) ∈ 𝑉src ×𝑉sink];
3 foreach 𝑝 ∈ A do in parallel
4 𝑣src ← first(𝑝);
5 𝑣sink ← last(𝑝);
6 𝜙𝑝 ← 𝑡𝑟𝑢𝑒;
7 if (𝑣src, 𝑣sink) ∉ 𝑑𝑜𝑚(Ψ) then
8 Ψ(𝑣src, 𝑣sink) ← 𝑓 𝑎𝑙𝑠𝑒;
9 foreach ℓ𝑖 ∈ VFSegments(𝑝) do
10 𝜙ℓ𝑖 ← getPathCond(ℓ𝑖 ,𝐺);
11 𝜙𝑝 ← 𝜙𝑝 ∧ 𝜙ℓ𝑖 ;
12 Ψ(𝑣src, 𝑣sink) ← Ψ(𝑣src, 𝑣sink) ∨ 𝜙𝑝 ;
13 return Ψ;

5.3 Path Condition Collection

Recall that a realizable segment path only abstracts how a source 𝑣src and a sink 𝑣sink are realized interprocedurally,
leaving its path feasibility unknown. To determine whether a pair of the source and the sink indicates the existence
of a bug, we have to efficiently collect the conditions of the paths summarized by each value-flow segment and
then concatenate them according to realizable segment paths in the VFSG.

Algorithm 4 shows the parallel algorithm of collecting path conditions for bug detection. For each unique pair
of (𝑣src, 𝑣sink) in the segment paths, it attempts to generate the corresponding path condition Ψ(𝑣src, 𝑣sink). It takes
as input the set of the realizable segment pathsA, which are returned by Algorithm 3. Here, VFSegments returns
a sequence of value-flow segments in the realizable segment path 𝑝 . For each value-flow segment ℓ𝑖 : 𝑢 ; 𝑤

occurring in each realizable segment path 𝑝 ∈ A, getPathCond collects the path conditions of 𝑢 reaching
𝑤 (line 10) on the GVFG in a disjunctive form. Eventually, it disjuncts all path conditions with the same sources
and sinks (line 12). Once the path condition is 𝑠𝑎𝑡 , we conclude that there is a feasible path from the source to the
sink, indicating the presence of a value-flow bug.

Example 5.3. As shown in Example 5.2, we have A = {(ℓ1, ℓ4, ℓ8), (ℓ2, ℓ6, ℓ8), (ℓ5, ℓ8), (ℓ7, ℓ8), (ℓ7, ℓ9)} for the
motivating example in Figure 1. Suppose we collect path conditions for (NULL2, 𝑏6) as examples, Algorithm 4
processes two paths simultaneously, yielding two path conditions: 𝜙1 ∧ 𝜙2 and ¬𝜙4 ∨ (𝜙3 ∧ ¬𝜙4). Taking the
disjunction of them, we have Ψ(NULL2, 𝑏6) = (𝜙1 ∧𝜙2) ∨ (¬𝜙1 ∧ (¬𝜙4 ∨ (𝜙3 ∧¬𝜙4))). In this way, we also process
path conditions for other sources and sinks in parallel and report only the feasible paths in A.

It is worth noting that Octopus can generate the same path condition as other variants (e.g., bottom up
analysis [55]) of the analysis targeting the same source-sink problem. As demonstrated by Theorems 1 and 2,
Octopus collects the same value-flow paths as other algorithms [53, 55] do. By recovering the path conditions
on the same GVFG, which is the input of our problem, the recovered path conditions are also the same for any
value-flow paths. Therefore, the logical disjunctions of all the path conditions are equivalent to the one obtained
by the analysis of another variant, which provides the correctness guarantee of our algorithm.

Besides, it is remarkable that we only compute the path conditions for realizable segment paths without intro-
ducing redundant computation. Specifically, we only compute the path conditions of each intraprocedural path
summarized by a value-flow segment occurring in a realizable segment path (line 11). For example, assuming ℓ𝑛
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is not present in any segment path, its path condition 𝜙ℓ𝑛 will never be computed. Finally, we can formulate the
following theorem to demonstrate the potential speedup of Algorithm 4.

Theorem 5. Given the VFSG 𝐺 = (𝑉 , 𝐸,L), the potential speedup of Algorithm 4 is Ω( |𝑉 |), where 𝑉 is the
number of value-flow segments.

Proof. According to [54], the time complexity for path condition collection is𝑂 ( |𝑉 |+|𝐸 |). Since path conditions
of particular values can be cached without recomputing, getPathCond also takes at most 𝑂 ( |𝑉𝑓 | + |𝐸𝑓 |) time for
each segment ℓ in the function 𝑓 , and we can have at most |𝑉 | in total. Thus, we have 𝑇1 = Ω( |𝑉 | ∗ (|𝑉 | + |𝐸 |))
since we can clone the constraints for each function multiple times. Similar to the proof of Theorem 3, we have
𝑇∞ = 𝑂 ( |𝑉 | + |𝐸 |) with sufficient threads. Finally, we have a potential speed up 𝑇1

𝑇∞
= Ω( |𝑉 |). In practice, the |𝑉 | is

unlikely to be smaller than the number of available physical threads of a server, giving a maximum speedup. □

5.4 Summary and Discussion

At the end of the section, we summarize our parallel algorithm Octopus with the highlights of its benefits and
potential redundancy issues.
Benefits. Our parallel algorithm Octopus benefits from our realizability decomposition presented in § 4,

which enables us to decouple the path condition collection of single functions from the realizability reasoning,
improving overall efficiency from the following two perspectives:
• First, we only preserve realizable segment paths instead of blindly caching intraprocedural paths in the
GVFG, avoiding redundantly collecting value-flow paths that never form a realizable source-sink path.
• Second, all three stages can be parallelized in balance either by task composition and adaptions to parallel
graph traversal algorithms, yielding an efficient parallel algorithm for our problem.

Particularly, the potential speedups of Algorithms 2 and 4 are determined by the number of sources𝑉src, which is
of great quantity according to our evaluation (§7). Meanwhile, the potential speedup of Algorithm 3 is determined
by the number of interprocedural segment paths from BFS, which is even larger than the number of segments.

Redundancy. Although we avoid unnecessary intraprocedural path exploration in the first stage, the redun-
dancy issue still exists in the value-flow segment graph generation, as not all the segments can contribute to
a realizable segment path. For example, we generate the value-flow segments ℓ3 redundantly for the example
program in Figure 1 as Coyote does. However, such redundancy does not bring significant overhead in the
parallelization for the following three reasons:
• First, the value-flow segments starting from a given source are generated by a linear-time graph traversal.
Algorithm 2 takes at most quadratic time to the size of the GVFG of a single function, which is generally
smaller than the complexity of solving the CFL-reachability problem.
• Second, the value-flow segment graph generation can be fully parallelized at the function level because the
computations are intraprocedural. Given adequate physical CPU cores, the time overhead of computing
redundant value-flow segments can be negligible.
• Third, the value-flow segments that are redundantly generated do not participate in the concatenation of
path conditions in Algorithm 4, which does not propagate the redundancy in the subsequent stages.

Therefore, the redundancy issue does not bother Octopus’s performance. Instead, it gains maximum potential
speedup via completely relaxing caller-callee dependencies when collecting value-flow segments, unlike previous
work, can have limited speedup due to partial relaxation [55].

6 INSTANTIATION AND IMPLEMENTATION

This section presents two instantiations of value-flow analysis and provides the implementation details.
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6.1 Instantiations

To show the capability of Octopus, we instantiate two clients, namely NPD detection and taint analysis. Par-
ticularly, both analyses are context, flow-sensitive, and path-sensitive value-flow analysis, featuring the high
precision in the bug detection. In what follows, we demonstrate more details of instantiating the two clients.

NPD Detection. As discussed in Example 3.4, we need to instantiate the unary predicates mayNull(𝑣) and
deref(𝑣) in the NPD Detection. Apart from explicitly specifying the NULL values as the sources for instantiating
the predicate mayNull(𝑣), we additionally specify the library function calls that could return a NULL value as
sources. For example, we regard the return values of malloc-like memory allocation functions as the sources, such
asmalloc,memcpy, andmemset, as the memory allocations may fail in a concrete execution of the program. Also,
we set deref(𝑣) to be true for the pointers dereferenced by the instructions. Similarly, we regard the parameter
passed to library function calls that would be dereferenced later as sinks. Benefiting from Octopus, we can
determine if sources and sinks are reachable by collecting the realizable path conditions efficiently to Ψ and
solving them with an SMT solver with high precision. Meanwhile, the paths from A allow the developer to
diagnose the bug if the path conditions are satisfiable.

Taint Analysis. To demonstrate our broad applications, we also instantiate taint analysis [3, 4] based on
Octopus. Similar to NPD detection, we need to specify the forms of sources and sinks, while they often vary
in different taint bugs. For example, when we detect relative path traversal bugs [15], we should model the
uncontrolled inputs as the sources, such as the return value of fgets, and regard the directory variables used in
the file open operations as the sinks. Particularly, the propagation of values often involves library functions, of
which the semantics is summarized by the taint specification [3, 12]. Intuitively, the taint specification decides
whether or not an edge should be added to the GVFG. Lastly, we often need to resolve the sanitizers, which can
terminate the value propagation. Benefiting from our parallel path- and context-sensitive analysis, developers
can efficiently validate if certain program locations can contain sensitive values.

6.2 Implementation

We have implemented Octopus and the two instantiations on top of the LLVM framework [30] and use Z3 [18]
as the default theorem prover to analyze C/C++ programs. Currently, Octopus has been integrated into the
static analysis platform Pinpoint [53] in Ant Group to assist with the nightly scan of code repositories. For the
consideration of commercial use, we will not release the artifact of Octopus upon acceptance. To convenience the
reproduction of our results in the future study, we provide more implementation details of Octopus as follows.

Parallelization. The number of tasks generated in Algorithm 3 can be extremely large since the concatenation
can happen simultaneously many times. Instantiating too many workers can easily decrease the performance of
thread pools due to context-switching [14]. To resolve the performance issue, we implement a customized thread
pool to support task submission in batch to avoid performance drop. In our implementation, we dynamically
adjust the batch size according to the number of available threads. Specifically, the number of tasks in a batch
equals to the number of all the subtasks divided by the number of available threads. Meanwhile, we also adopt
the work-stealing algorithm [8] in our batch-enabled thread pool. That is, if a batch is empty, it can automatically
steal tasks from other batches. Such design can keep maximum efficiency at all times effectively.

Path sensitivity. To achieve the best efficiency for path-sensitive analysis, we also adopt the no-caching
strategy such that the path conditions are never encapsulated in the intermediate summaries [54]. In contrast, we
only recover the path conditions when a path is obtained. Evidence has shown that such a strategy can speed up
path-sensitive analysis by several times and avoid redundant computation and potential out-of-memory issues in
practice [54]. To make a fair comparison, this strategy is applied to both the baseline approach Coyote [55] used
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for evaluation and our algorithm (detailed in Algorithm 4). For practicality reasons, we set the solver timeout to
10 seconds per query for both Coyote and Octopus.

Soundiness. Octopus does not target the rigorous program verification, and thus, makes a few reasonably
unsound choices (i.e., soundy [35]) following the previous tools [1, 53, 55]. For instance, we unroll each loop
twice on the control flow graph, do not handle inline assembly, and manually model several but not all standard
C/C++ libraries. When constructing the GVFG, we use a flow-insensitive pointer analysis to resolve the function
pointers [76] and adopt the assumption that the pointer parameters of any function are not aliased, which are
commonly adopted in many existing studies [1, 53].

7 EVALUATION

To evaluate the effectiveness of Octopus, we investigate the following research questions:
(RQ1) What is the speedup ratio of Octopus? (§ 7.2)
(RQ2) Can Octopus outperform the most recent parallel analysis regarding efficiency and memory? (§ 7.3)
(RQ3) What is Octopus’s CPU utilization rate? (§ 7.4)
Result Highlights. In summary, our parallel algorithm stands out with the following features:
• High speedup. In the NPD detection, Octopus achieves at most 5.2× speedup with 40 threads compared to
the analysis with 10 threads. The speedup is almost linear to the available threads, posing its sustainable
scalability in analyzing large-scale programs with more CPU cores.
• Overwhelming superiority over the SOTA parallel analysis. Octopus achieves 123.1× average speedup
compared with the SOTA parallel value-flow analyzer [55] under the 40-thread setting for NPD detection.
• Almost full CPU utilization. Octopus leverages the computation resources of multi-core machines thor-
oughly, almost occupying the CPU cores during the whole analysis process.

As a general value-flow analysis framework, Octopus has been deployed in the international company, Ant
Group, conducting the code quality and security scan in a scheduled manner.

7.1 Experimental Setup

Baselines. We compare Octopus against the SOTA parallel context- and path-sensitive value-flow analysis
Coyote [55], which improves the bottom-up-style parallelism of Pinpoint [53]. Additionally, as also explained
in §6.2, our approach does not cache SMT constraints until the last stage like previous work [51]. To have a
fair comparison, we also apply its no-caching strategy to Coyote to make a fair comparison. Without loss of
generality, we choose NPD detection as our client. We do not compare with pure CFL-reachability approaches, as
we have not found such publicly available tools resolving context- and path sensitivity simultaneously. However,
the comparison with Coyote should be sufficient to show our strength and demonstrate our contribution to
the program analysis community. To show the generality of our approach, we also evaluate the performance
of Octopus in the taint analysis and compare it with Coyote of which the result is briefed at the end of the
evaluation. To remove the impact from the execution environment, we repeat the experiments in each stage and
calculate their average performance and speedup.
Subjects. To show our wide applicability in analyzing diverse real-world applications, we adopt all large

programs (>100 KLoC) of SPEC CPU® 2017 benchmark [9]. In addition, we select three up-to-date open-source
programs whose sizes are also greater than one MLoC, namely postgres, ffmpeg, and llvm, which are popular and
fundamental software systems. All the evaluation subjects are shown in Table 1. Notably, we leverage GLLVM [57]
to compile each project into a whole-program LLVM bitcode, which is fed to Octopus as its input for analysis.
Environment. Our experiments are conducted on a workstation with forty “Intel® Xeon® CPU E5-2698 v4

@2.20GHz” physical processors and 256GB of memory running Ubuntu 20.04. To have a fair comparison, we
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Table 1. Statistics of evaluated SPEC CPU® 2017 and open-source programs. |F| denotes the number of functions, |V| denotes
the number of value-flow segments in their VFSGs for the NPD detection, and |Vsrc | denotes the number of value-flow

segments starting with a NULL value.

Source ID Program KLoC |F| |V| |Vsrc | Application Area

SPEC
CPU® 2017

1 wrf 130 882 9,106 1,281 Weather Forecasting
2 omnetpp 134 14,128 73,048 12,551 Discrete event simulation
3 povray 170 2,782 32,089 9,255 Ray tracing
4 cactuBSSN 257 3,893 134,572 19,623 Physics
5 imagick 259 3,886 58,983 18,215 Image manipulation
6 pop2 338 1,163 10,813 1,671 Ocean modeling
7 perlbench 362 4,557 59,529 73,591 Perl interpreter
8 cam4 407 953 9,861 1,548 Atmosphere modeling
9 parest 427 58,045 441,717 16,947 Biomedical imaging
10 xalancbmk 520 37,480 218,608 44,937 XML Converter
11 gcc 1,304 39,809 271,924 266,418 GNU C Compiler
12 blender 1,577 52,871 372,402 166,647 3D renderering

Open
Source

13 postgres-14.6 1,149 21,652 408,577 96,888 Database system
14 ffmpeg-5.1.2 1,346 18,725 434,519 53,139 Multimedia processing
15 llvm-3.6.2 6,347 309,467 2,718,508 132,558 Low-level virtual machine
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Fig. 5. Speedup of Octopus with different threads over a 10-thread setting on NPD detection. The x-axis and y-axis refer to

the number of threads and the speedup at the logarithmic scale. We omit the projects wrf, omnetpp, and cam4 in Figure 5

as their analysis time is no more than ten seconds. All the stages finish before the thread pool is fully occupied, making it

difficult to measure the speedup.

adopt the same design choices as Coyote to conduct experiments, as briefed in § 6.2. In order to mitigate the
possible runtime performance difference brought by the multi-core CPU scheduling, we repeat 10 times and take
their average time and memory consumption in the experiments introduced below.

7.2 RQ1: Speedup

To measure the speedup of our parallel algorithm, we choose the running time of the 10-thread setting 𝑇10 as
the baseline and measure the running time over 𝑇10. This is because if using one thread, the time for analyzing
many projects would exceed the 12-hour timeout. Notably, the running time includes the time of realizable path
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Table 2. Octopus (O)’s running time (sec), Coyote (C)’s running time (sec), and Octopus’s speedup over Coyote ( ↩→) on NPD

detection. Similar to Figure 5, we ignore three projects wrf, omnetpp, and cam4 in the calculation of the average speedup.

ID # Thread = 10 # Thread = 20 # Thread = 30 # Thread = 40
O C ↩→ O C ↩→ O C ↩→ O C ↩→

1 1 600 600.0 1 484 484.0 1 409 409.0 1 402 402.0
2 12 655 54.6 7 599 85.6 4 577 144.3 3 584 194.7
3 80 2,510 31.4 40 2,153 53.8 32 2,088 65.3 26 1,982 76.2
4 1,194 2,024 1.7 534 1,432 2.7 408 1,582 3.9 299 924 3.1
5 60 4,875 81.3 57 3,307 58.0 34 2,935 86.3 19 2,730 143.7
6 16 619 38.7 11 479 43.5 7 437 62.4 4 399 99.8
7 1,464 7,664 5.2 806 6,942 8.6 661 6,323 9.6 534 5,804 10.9
8 1 666 666.0 1 492 492.0 1 433 433.0 1 380 380.0
9 65 9,933 152.8 45 9,861 219.1 36 9,470 263.1 31 9,400 303.2
10 61 2,778 45.5 46 2,427 52.8 24 2,278 94.9 16 2,216 138.5
11 12,438 23,320 1.9 7,506 17,323 2.3 4,809 14,502 3.0 4,224 13,138 3.1
12 8,190 14,676 1.8 3,536 10,820 3.1 2,305 9,409 4.1 1,580 8,646 5.5

13 867 12,676 14.6 590 8,953 15.2 524 7,445 14.2 454 6,816 15.0
14 6,262 25,923 4.1 3,359 17,694 5.3 1,906 13,443 7.1 1,308 9,699 7.4
15 1,591 37,301 23.4 999 31,630 31.7 588 28,615 48.7 414 26,127 63.1

Avg 114.9 103.8 109.9 123.1

conditions and constraint solving. We then measure the running time of Octopus under different threads, namely
20-thread, 30-thread, and 40-thread settings. Furthermore, we compute the speedup ratio by 𝑆 =

𝑇10
𝑇𝑝

, where 𝑇𝑝 is
the running time under the setting with 𝑝 thread. Finally, we obtain 𝑆 under different available threads.
Figure 5 presents the details of the speedup under different settings. Obviously, the results show that the

more threads allocated, the higher speedup will be gained. In particular, we achieve a 1.9-5.2× speedup under
40-thread settings compared to 10-thread settings. For example, Octopus gains 5.2× speedup 2 running 40 threads
compared to that running ten threads when analyzing the project blender (ID=12) with 1.5 MLoC. The results
also indicate that we can gain an almost-linear speedup when the number of threads grows.

7.3 RQ2: Scalability

To compare the scalability of Octopus and Coyote for each project’s analysis, we measure the running time
and peak memory of both tools under different thread settings in relevance to their code size. Then we compute
the speedup and memory consumption of Octopus over Coyote under each setting, quantifying the scalability
improvement of Octopus. Similar to 7.2, we refer to the overall analysis time as the running time.
Table 2 shows the detailed running time statistics and its speedup ratios. Figure 6a displays the scalability

improvement on a 40-thread setting in a straightforward manner. It is observed that, in general,Octopus improves
scalability greatly when the code size increases. In particular, the speedup over Coyote under the 10-thread
setting is 114.8× on average, and the speedup reaches 123.1× when using 40 processors. Moreover, the maximum
speedup is 402.0× on the project wrf, a medium-sized program, under the 40-thread setting. Besides, the speedup
over Coyote under the 40-thread setting reaches 67.8× when analyzing the open-source project llvm, which has
2The superlinear speedup is because, with more threads allocated, there is a higher possibility that solving intraprocedural path conditions
can prune the feasibility of an interprocedural one. The implementation of the baseline Coyote and Octopus solve the same stage-solving
strategy in constraint solving.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2023.



Octopus: Scaling Value-Flow Analysis via Parallel Collection of Realizable Path Conditions • 1:23

3

24
17

36

3

54
45

83

54

31
44

189

21

73

35
44

52

25

y = 0.0284x + 12.327
R² = 0.8764

y = 0.0027x + 24.261
R² = 0.0444

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000 6000 7000

M
em
em
or
y
(G
B
)

Code Size (kLoC)

Coyote
Octopus

(a) Scalability in terms of analysis time

y = 4.0587x + 1965
R² = 0.8292

y = 0.1304x + 466.22
R² = 0.0332

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000

T
im
e
(s
)

Code Size (kLoC)

Coyote
Octopus

(b) Scalability in terms of analysis memory

Fig. 6. Scalability of Octopus and Coyote on a 40-thread setting for NPD detection.

over 6 MLoC. Such speedup is significant enough to support the efficient static analysis clients on the programs
with million lines within a few minutes, promoting its potential for CI/CD integration [74]. In contrast, Coyote
has to spend almost two hours analyzing the project postgres even with 40 threads, while it only takes around
seven minutes for Octopus to finish the analysis under the same setting. We can observe that the scalability of
Coyote is almost linear (𝑅 = 0.8292) to the code size while Octopus remains almost constant, demonstrating
that Octopus is insensitive to the code size.
An interesting observation that Octopus’s speedup over Coyote is not always increasing significantly. One

example that the speedup is significantly increasing is when analyzing povray (ID=3), where Coyote requires
2,153, and 2,088 on 20, 30, and 40 threads, and the corresponding speedup does increase significantly in the order
of 53.8×, 65.3×, 76.2×. However, sometimes the speedup over Coyote is not that obvious. For example, analyzing
postgres (ID=13) at 20 and 40 threads only takes 590 and 454 seconds and yields a speedup of 15.2× and 15.0× to
Coyoteİt can be observed that the time spent in the 40-thread setting is not half of that in a 20-thread setting,
but the number is rather close. This is because in the case of Octopus, as discussed in Theorem 4 in § 5.2, the
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Fig. 7. CPU utilization rate of Octopus and Coyote on the NPD detection. The x-axis and y-axis stand for the time

consumption and the CPU utilization rate (e.g., 4000% means fully occupying all forty cores), respectively. To show the

difference clearly, the CPU utilization of Coyote is not completely presented.

potential speedup is Ω( |𝑉src | · ( |𝑉 |+|𝐸 | )
𝐷

), indicating that when there is a chain-like VFSG that is typically owned by a
small-scale program, the overall speedup can be limited to Ω( |𝑉src |), which becomes the main obstacle to keeping
a stable and linear speedup. Considering both cases exist in our experiments, the average speedup (table 2) is not
increasing significantly. However, our evaluation has shown a significant speedup indicating higher scalability
than Coyote.

Figure 6b also depicts the memory consumption of the two tools on a 40-thread setting. On average, Octopus
consumes 33% less memory than Coyote because the redundancy can only happen in the intraprocedural segment
generation, generally lower than the redundancy of Coyote as discussed in § 5.4. In particular, when analyzing
the project llvm, we can save at most 164GB (= 189 − 25) memory when performing NPD detection, yielding an
86.7% memory reduction. However, there are cases where Octopus consumes more memory, because Octopus
can occupy all threads and achieve the highest CPU utilization during the whole analysis, each thread must
allocate enough memory for the computation. In contrast, Coyote cannot occupy all threads in many cases, e.g.,
when analyzing the project postgres, and thus can consume less memory.

To summarize, it is reasonable to draw the conclusion that our parallel algorithm is overwhelmingly more
scalable than Coyote when analyzing real-world programs. The results also imply parallelizing the collection
of realizable path conditions significantly improves the overall efficiency in the context- and path-sensitive
value-flow analysis.
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7.4 RQ3: CPU Utilization

To quantify the CPU utilization rate of Octopus and Coyote, we utilize Intel© VTune Profiler to measure the
CPU time of analysis processes. Specifically, we display the CPU utilization of analyzing the three largest projects
in SPEC CPU® 2017 benchmark and the three selected open-source programs.

Figure 7 shows the utilization against the running time of the two projects. We observe that Coyote cannot
occupy all CPU cores during the analysis because, for many projects, the call graph is irregular and similar to a
chain in shape, i.e., each function calls only a few functions. In such situations, there are few cases where the
two analysis tasks do not depend on each other at the same time, yielding low parallelism. Even in the middle
of the analysis, drop-offs in CPU utilization ratio are frequently observed. The parallelism will be extremely
limited if the call graph is similar to a chain in shape, i.e., each function calls only a few functions. In this case,
the independence of functions can hardly exist during the analysis lifecycle. Even in the middle of the analysis,
drop-offs in CPU utilization ratio are frequently observed. In contrast,Octopus generates the value-flow segments
of single functions simultaneously, of which each worker does not depend on the other. Also, the collection of
realizable segment paths and the path conditions are also highly parallelized due to the independence of the
search tasks. Although we observe drop-offs occasionally occur near the end of the analysis due to path condition
solving, Octopus almost occupies all CPU cores during the whole analysis process.

7.5 Results of Taint Analysis

To show the generality of Octopus, we also conduct experiments on taint analysis for the experimental subjects.
For simplicity, we only show the detailed performance statistics of Octopus of three open-source projects in
Table 3, all of which have more than 1 MLoC. We surprisingly find that Octopus finishes taint analysis upon
any project around or within one minute under each of the four settings. In contrast, Coyote has to spend over
3 hours analyzing the project ffmpeg with 40 threads, and the analysis exceeds the 12-hour time budget when
analyzing llvm under all settings. The speedup ranges from 733.4× to 2,166.2× when analyzing the first two
projects under different settings, demonstrating Octopus’s superiority for the taint analysis.

According to Table 3, we also find that the speedup over Coyote of the taint analysis is much greater than that
of the NPD detection. As shown in the columns |Vsrc | of Table 3 and Table 1, the taint bugs are generally smaller
in quantities compared with NPD bugs because they have fewer value-flow segments starting from the sources in
the taint analysis than the NPD detection. For example, postgres gots only 1, 146 taint source segments compared
to 12, 671 source segments for NPD detection, eventually yielding only 9 realizable and feasible segment paths.
Moreover, Octopus achieves overwhelming speedup over Coyote because as exemplified in § 5.2, it can ignore
the concatenation of segments not contributing to the taint bugs, thus avoiding redundant computation and
achieving overwhelming speedups. However, Coyote needs to capture more value-flows due to the modeling of
library functions in the taint analysis, dramatically limiting its performance such that none of the settings could
finish under the 10-hour time limit when analyzing llvm. Octopus itself cannot achieve linear speedup because
the analysis time is relatively short. The benefit of parallelization cannot be fully exposed since the thread pool is
not fully occupied during the analysis. However, Coyote still has to explore unnecessary value-flow paths in a
bottom-up manner, which cannot be fully parallelized, finally introducing high overhead in the taint analysis.

7.6 Comparison of Value-Flow Paths

Octopus works on the same precision as Coyote as discussed in § 6.2 and both have been applied with no-cache
stragety [54]. Therefore, the reported number of feasible value-flow paths and their precision should be almost
the same. For instance, Octopus reported 15,228, 8,158, and 78,389 feasible value-flow paths for NPD in the
real-world project postgres, ffmpeg, and llvm. On the other hand, Coyote reported to have 15,666, 8,369, and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: February 2023.



1:26 • Wensheng Tang, Dejun Dong, Shijie Li, Chengpeng Wang, Peisen Yao, Jinguo Zhou, and Charles Zhang

Table 3. The running time (sec) and speedup of taint analysis. “OOT” stands for out-of-time under the budget of 12 hours.

ID |V| |Vsrc | |A|
# Thread = 10 # Thread = 20 # Thread = 30 # Thread = 40

O C ↩→ O C ↩→ O C ↩→ O C ↩→

13 62,815 1,146 9 9 10,592 1,176.9 9 8,000 888.9 8 6,706 838.3 8 5,867 733.4
14 52,065 1,412 203 13 28,160 2,166.2 13 18,612 1,431.7 12 14,561 1,213.4 13 12,231 940.8
15 2,037,891 346 9 75 OOT N/A 68 OOT N/A 63 OOT N/A 57 OOT N/A

79,281 in postgres, ffmpeg, and llvm
3. After re-running a few times, the number changes again delicately. By

profiling both tools, we identify that the minor difference observed in these projects is because of the solver
timeouts that may or may not be triggered by different runs in a parallel environment. If constraint solving
reaches a timeout, we conservatively treat it as an unsat result and reject the value-flow path. Therefore, the
number will vary from one run to another.

7.7 Threats to Validity

We analyze the threats to validity of Octopus from the following three aspects:

Construct Validity. The construct validity mainly comes from the choice of metrics for the performance
evaluation. We currently select CPU usage to measure the runtime efficiency for the analysis in parallel. It is
also possible that other issues can cause high CPU usage. For example, CPU spin time can also cause high CPU
usage but does not make actual work. Nevertheless, we have shown that all our Algorithms 2-4 is unlikely to
have data races or long wait of dependent subtasks. Therefore, it is implausible that our approach can suffer from
CPU-time-related construct validity.

Internal Validity. The internal validity mainly comes from the selection of checkers and their corresponding
implementation used for evaluation. We currently select NPD detection and taint analysis as the two checkers
for our evaluation. The overall performance and potential speedup might vary from one checker to another.
However, the checker we used is the representative checker from a prior work [55] and has a standard specifica-
tion (Section 6.1). Besides, we follow the SOTA path-sensitive analysis [54] to collect the relevant paths first and
then recover their path conditions. If implemented with an online pruning strategy, i.e. solving the constraints to
prune infeasible paths during the summarization, the performance might also vary from one program or checker
to another. Nevertheless, the SOTA [54] has shown its efficiency in analyzing real-world applications. Under
such settings, we can continuously improve the scalability of path-sensitive program analysis.

External Validity. The external validity mainly comes from the subject selection and the running environment.
The subjects are representatives of real-world programs from SPEC®CPU 2017 and open-source repositories. The
performance can still vary from analyzing one subject to analyzing another. Besides, the running environment is
a multi-core CPU with a 2.2GHz main frequency for each physical core. A more or less powerful CPU might
also affect the evaluation results. Nevertheless, both our theoretical analysis and empirical data have shown
that it is unlikely that our approach is less scalable than the traditional approach. In addition, more significantly
increasing speedups over Coyote may be observed if a more efficient thread pool implementation is integrated
to mitigate the thread initialization/deinitialization overhead.

3The number of feasible value-flow paths is not equivalent to the number of bugs, because one bug can be triggered via multiple value-flow
paths via different value-flow nodes on the value-flow graph in the SSA form. Therefore, we compare the feasible paths to demonstrate that
Octopus can generate the almost same results as the baseline.
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7.8 Future Work

Beyond our parallel analysis, we notice our insight into the realizability decomposition can further benefit the
value-flow analysis from two other aspects.

• First, we can hopefully achieve nearly real-time incremental analysis. Unlike the bottom-up analysis, our
value-flow segment graph generation is unaware of the call graph. Therefore, the incremental analysis
based on our infrastructure only needs to analyze impacted functions when software evolves, which can
further advance towards the goal of deploying static analyzers in the CI/CD workflow [74].
• Second, our realizability decomposition makes it possible to divide the whole analysis into almost arbitrary
tasks upon the cloud clusters. The standardized, containerized, and virtualized clusters with lower hardware
resources become the most common environment for the best elasticity in a typical industrial setting [34].
As demonstrated by the answer to RQ1, the almost linear speedup of Octopus demonstrates its practical
potential of achieving better performance with a large number of physical processors.

8 RELATED WORK

There is a vast body of studies closely relevant to our work, covering various areas of static program analyses. In
what follows, we discuss the works of each area in detail.

8.1 Parallel Program Analysis

Parallel algorithms for static analysis is an active area of research. One typical line of the works concentrates
on the parallelization of pointer analysis [7, 37, 40, 41, 61]. For example, Méndez-Lojo et al. [41] conducts the
inclusion-based pointer analysis via graph rewrite rules to expose the amorphous data parallelism, which supports
the parallel computation of points-to information. Su et al. [61] parallelizes a CFL-reachability-based pointer
analysis via data sharing and query scheduling, which achieves field and context sensitivity efficiently. Another
line of the related works targets a variety of parallel client analysis [49, 55, 66, 69, 79]. Particularly, Coyote [55]
is the most closely-relevant work to Octopus. Similar to Octopus, Coyote decomposes the function summaries
into more fine-grained ones and forms three kinds of intra-procedural value-flow summaries, which support
inlining part of function summaries in advance even if the function summaries of callees are not fully prepared.
However, Coyote is still restricted by the call graph structure, preventing it from achieving higher potential
speedup. Wang et al. [69] and Zuo et al. [79] propose a disk-based parallel graph system to perform the flow and
context-sensitive analysis, which reduces the consumption of time and memory simultaneously. In the future, it
is also worth reducing the memory cost of our approach from the perspective of the system design, i.e., storing
the value-flow segments in the disk and loading them on demand during the traversal, which can further promote
the practical value of Octopus.

8.2 CFL-Reachability-based Analysis

CFL reachability has been broadly used in program analysis for a wide range of applications, such as context-
sensitive data flow analysis [47], program slicing [48], shape analysis [46], type-based flow analysis [27, 42],
and pointer analysis [58, 60, 70, 71, 76–78]. Most existing work labels the edges of specific graphs to enforce
the CFL-reachable paths to depict desired properties. For example, several Anderson-style pointer analyses
label the edges in the pointer assignment graph with the fields of structures and obtain the field-sensitive alias
and points-to facts [60, 70, 76]. Besides, many context-sensitive analyses introduce the parentheses for the
edges between callers and callees, where a CFL-reachable path corresponds to a possible control flow path in a
concrete execution [47, 51, 67]. Octopus bears similarity with these context-sensitive analyses but considers
path-sensitivity in the meanwhile. Besides, it poses the opportunity of scaling the analysis up by parallelization.
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8.3 Compositional Analysis

There is a large amount of literature on compositional analyses, which reuses information within a procedure as
summaries for better efficiency [1, 5, 39, 43, 47, 50, 53, 65]. According to the order of analyzing each function on
a call graph, their summaries can be divided into two categories, namely top-down and bottom-up summaries.
Top-down-based approaches [43, 47, 50] compute summaries on a specific program context, and reuse the
compatible summaries when encountering the same context. Most program analyses nowadays prefer a bottom-
up fashion [1, 5, 39, 53, 65]. They symbolize the effect of a function with bottom-up summaries and inline the
summary of a callee into the summary of its caller, which avoids analyzing a single function redundantly. As
indicated by existing studies [2], a bottom-up summary design provides better parallelism than top-down ones.
However, the bottom-up style parallelism is restricted by the call graph structure [55], as a caller’s summary
cannot be fully determined until all of its callees’ summaries are obtained. Our work achieves full parallelism by
designing a fine-grained function summary, i.e., value-flow segments, and thus, can obtain better scalability with
an affordable number of processors.

8.4 Value-Flow Analysis

The past few decades have witnessed the increasing popularity of value-flow analysis [26, 53, 62, 64]. It concen-
trates on the program dependencies to support various static analysis clients, such as the program optimiza-
tion [26], program understanding [59], and bug detection [53, 63]. Particularly, many critical vulnerabilities,
including NPD [52], memory leak [22], and taint bugs [4], can be effectively detected by finding realizable
value-flow paths. Thus, Octopus can benefit a variety of value-flow analysis clients significantly, improving
their efficiency in analyzing large-scale programs. Similar to Octopus, existing value-flow analyses have to
establish a value-flow graph as the first stage [53, 64, 68] or resolve the value propagation induced by pointers
during the graph traversal [23, 56], which demands the pointer analysis to propagate value flows. In our work,
Octopus achieves the parallel collection of path conditions for realizable paths while still relying on a serial
version of the GVFG construction. Unfortunately, the current flow-sensitive value-flow analysis [64] necessitates
a flow-insensitive VFG in the preprocessing stage, which might introduce extra redundancy. In addition, it
handles strong updates using on-demand graph traversal while simultaneously deleting edges on the VFG and
propagating changes, making it difficult to search from different sources simultatenously following our approach.
However, it would be quite a promising direction to design a parallel algorithm for constructing the value-flow
graph as an extension such that the overall analysis is designed in a fully demand-driven but parallel manner,
where the efficiency could even improve.

9 CONCLUSION

We have presented Octopus, a parallel approach to collect realizable path conditions to scale value-flow analysis.
Based on realizability decomposition, Octopus decouples the intraprocedural path condition collection from
the realizability reasoning. We have proved that Octopus can obtain a high potential speedup for each stage
theoretically. The evaluation also evidences that Octopus achieves a full utilization of an arbitrary number of
CPU cores and accelerates the SOTA parallel value-flow analysis by 123.1× on average for the NPD detection with
40 cores and the memory cost is averagely decreased. We believe Octopus not only enables faster whole-program
analysis on workstations but innovates incremental and distributed analysis in the future.
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