
CodeSpider: Automatic Code Querying with
Multi-modal Conjunctive Query Synthesis

Chengpeng Wang
cwangch@cse.ust.hk

The Hong Kong University of Science and Technology
Hong Kong, China

Abstract
Querying code conveniently is an appealing goal to the
software engineering community. This work advances this
goal by presenting a multi-modal query synthesis technique.
Given a natural language description and code examples, we
synthesize a conjunctive query extracting positive examples
and ignoring negative ones, which is further used to query
desired constructs in a program. To prune the huge search
space, we generate well-typed query sketches for refinement
by analyzing code examples and API signatures. We also
introduce two quantitative metrics to measure the quality
of candidate queries and select the best one. We have im-
plemented our approach as a tool named CodeSpider and
evaluated it upon sixteen code querying tasks. Our experi-
mental results demonstrate its effectiveness and efficiency.

CCS Concepts: • Software and its engineering→ Auto-
matic programming; • Human-centered computing→
User interface programming.

Keywords: Multi-modal Program Synthesis, Query Synthe-
sis, Code Querying
ACM Reference Format:
Chengpeng Wang. 2022. CodeSpider: Automatic Code Querying
with Multi-modal Conjunctive Query Synthesis. In Companion Pro-
ceedings of the 2022 ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH Companion ’22), December 5–10, 2022, Auck-
land, New Zealand. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3563768.3563954

1 Introduction
Programmers often need to explore their projects by code
querying in various scenarios of development, including

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SPLASH Companion ’22, December 5–10, 2022, Auckland, New Zealand
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9901-2/22/12. . . $15.00
https://doi.org/10.1145/3563768.3563954

API understanding [7], code refactoring [10], and bug detec-
tion [8]. Although there have been several industrial prod-
ucts and academic works on code querying, they often com-
promise between ease of use and capability [1, 5, 11]. Specif-
ically, most mainstream IDEs [5] provide convenient built-in
templates but only support the string matching-based search
of restrictive program constructs. Besides, query-based pro-
gram analyzers, e.g., CodeQL [1], store program constructs
with relational representations as its components and pro-
vide a collection of APIs for query writing. However, labori-
ous manual efforts are involved in query language learning
and query writing, which degrades usability significantly.

In this work, we aim to synthesize a query in a code query
language for a code querying task. Specifically, a querying
task is instantiated by a specification, where a natural lan-
guage (NL) description depicts the querying intent, and code
examples show the constructs which should be or not be
queried. For example, Fig. 1 shows the query specification
of finding the methods receiving a Log4jUtils object as a
parameter. A synthesized query leverages the components
and APIs in the query language to specify the relations of
constructs as the querying condition, which is conjunctive
and permits string predicates, supporting construct filtering
and string matching-based search simultaneously. A prac-
tical solution to our multi-modal synthesis problem would
provide a user-friendly interface for code querying.

public void foo(Log4jUtils a) { return; } // positive example
private void goo(int a) { return; } // negative example

Description:Methods receiving a parameter with Log4jUtils type.

Figure 1. An example of query specification

Unfortunately, it is non-trivial to synthesize the query
for a code querying task. First, a large number of compo-
nents and APIs in the query language induce a huge search
space [2, 4, 6], increasing the difficulty of synthesizing the
query efficiently. Second, there are often multiple query can-
didates satisfying the constraints induced by examples, while
many of them can suffer the over-fitting problem. To obtain
the target query, we have to synthesize queries efficiently
and measure the quality of query candidates effectively.
To solve the problem, we present a new synthesis tech-

nique CodeSpider where the analyses of code examples,
query language library, and the NL description collaborate
simultaneously. To prune the search space, we analyze code

https://orcid.org/0000-0003-0617-5322
https://doi.org/10.1145/3563768.3563954
https://doi.org/10.1145/3563768.3563954
https://doi.org/10.1145/3563768.3563954

SPLASH Companion ’22, December 5–10, 2022, Auckland, New Zealand Chengpeng Wang

Method

ParameterType Identifier

StringgetRetType

getType getIdentifier

getPara

ModifiergetModifier

getName

getName
getName

getName

getName

Figure 2. The TTN of Fig. 1

query2(Method m) :-
exists(Parameter p, Type t, String s)
p = m.getPara() &&
t = p.getType() &&
s = t.getName() &&
equals(s, “Log4jUtils”)

query1(Method m) :-
exists(Parameter p, Type t)
p = m.getPara() &&
t = p.getType()

query0(Method m) :- true

Figure 3. An example of query refinement

Ti
m
e
(s
ec
)

Task ID

Figure 4. Time cost of the synthesis

examples to narrow down the components and APIs poten-
tially used in the query, and leverage the API signatures
to construct a type-transition net (TTN), of which each sub-
graph induces a query sketch. Thenwe enumeratewell-typed
conjunctive queries by refinement and examine the feasibil-
ity by evaluating them upon code examples. To select the
best query for the querying task, we introduce the structural
complexity and the entity coverage to measure the quality
of candidate queries. We have evaluated CodeSpider upon
sixteen code querying tasks, which cover various kinds of
program constructs. CodeSpider successfully synthesizes
all the queries and consumes 3.35 seconds averagely.

2 CodeSpider in a Nutshell
Take the query specification in Fig. 1 as an example. Code-
Spider works with the following three stages.
Sketch Generation.We diff the program constructs of

positive and negative examples to identify possible compo-
nents in the query. In Fig. 1, for example, only the methods,
modifiers, types, parameters, and identifiers are different,
and thus, the corresponding components can occur in the
query. Then we construct the TTN according to API signa-
tures and generate all the query sketches by enumerating
its subgraphs. To support string matching, we consider the
APIs that return strings in the TTN construction by default.

Query Refinement. We enumerate the sub-graphs of
the TNN and evaluate induced queries upon the code ex-
amples. Specifically, we start from the weakest conjunctive
queries, in which the condition is true, and refine the queries
by adding new edges and appending string constraints. If a
query misses positive examples, we discard it and end the re-
finement. Otherwise, we continue to strengthen conjunctive
conditions until we obtain a candidate query that separates
the positive and negative examples. In Fig. 3, for example,
query0 and query1 both identify the negative examples, and
we finally obtain a candidate query2 by refining query1. Af-
ter the refinement, we can obtain all the candidate queries.
Query Selection. To select the query, we propose the

entity coverage and the structural complexity to quantify the
query quality. First, we extract the named entities [3] of the
NL description, which indicate possible components, APIs,
and string literals in the query, and the target query tends
to cover as many entities as possible. Second, we measure
the structural complexity of a query by the number of its
conjunctions. When there are multiple candidate queries

Table 1. Description of querying tasks
ID Description (#P,#N) (#C,#A) Kind
1 Float variables of which the identifier contains “cash” (3, 1) (4, 4) Var
2 Cast expressions from double-type to float-type (1, 2) (6, 7) Expr
3 Expressions comparing long int with int (1, 2) (3, 6) Expr
4 Cast expressions casting long to int (2, 1) (6, 7) Expr
5 Expressions comparing a variable and Boolean literal (1, 3) (4, 5) Expr
6 New expressions of ArrayList (1, 1) (3, 3) Expr
7 Logical-and expressions with a literal as an operand (2, 2) (4, 5) Expr
8 The import of LocalTime (2, 1) (3, 4) Stmt
9 The import of the classes in log4j (1, 1) (2, 2) Stmt
10 Labeled statements (2, 2) (1, 0) Stmt
11 If-statements with a Boolean literal as a condition (2, 1) (2, 1) Stmt
12 For-statements with a Boolean literal as the condition (2, 1) (2, 1) Stmt
13 Public methods with void return type (2, 1) (5, 6) Method
14 Methods receiving a parameter with Log4jUtils type (2, 1) (4, 4) Method
15 Classes with a login method (2, 1) (3, 3) Class
16 Classes containing a field with float type (1, 1) (4, 4) Class

with the maximal entity coverage, we select the one with
the lowest structural complexity, which induces the weakest
querying condition. For example, query2 is the target query
fitting the specification in Fig. 1. Althoughwe can enforce the
modifier to be “public” by refinement, this does not increase
the entity coverage but increases the structural complexity.

3 Evaluation
We implement CodeSpider to synthesize the queries for a
query-based program analyzer in Ant Group, while Code-
Spider is general enough to synthesize queries in other code
query languages [1]. We select the querying tasks in [9] as
a benchmark and specify the query specification manually.
As shown in the column (#P, #N) of Table 1, the numbers of
positive and negative examples are both no larger than 3.
Then we measure the time cost of CodeSpider and examine
whether the synthesized queries are the target queries.

CodeSpider successfully synthesizes all the target queries
for the sixteen querying tasks. The numbers of components
and APIs in the synthesized query are shown in the col-
umn (#C, #A) in Table 1. Actually, CodeSpider follows the
principle of Occam’s Razor. The queries cover the maximal
numbers of entities in the NL description, mitigating the
over-fitting problem caused by code examples. Also, it tends
to select the simplest queries without unnecessary condi-
tions, which have the lowest structural complexity, so that
the queries have better generalization capability. Moreover,
CodeSpider obtains high efficiency. Fig. 4 shows that it fin-
ishes any synthesis in ten seconds, and most of the tasks can
be handled in less than four seconds. The average time cost
is only 3.35 seconds, evidencing its high efficiency.

CodeSpider SPLASH Companion ’22, December 5–10, 2022, Auckland, New Zealand

References
[1] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max

Schäfer. 2016. QL: Object-oriented Queries on Relational Data. In 30th
European Conference on Object-Oriented Programming, ECOOP 2016,
July 18-22, 2016, Rome, Italy (LIPIcs, Vol. 56), Shriram Krishnamurthi
and Benjamin S. Lerner (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2:1–2:25. https://doi.org/10.4230/LIPIcs.ECOOP.2016.2

[2] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.
Reps. 2017. Component-based synthesis for complex APIs. In Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, Paris, France, January 18-20, 2017,
Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 599–612.
https://doi.org/10.1145/3009837.3009851

[3] Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning.
2005. Incorporating Non-local Information into Information Extrac-
tion Systems by Gibbs Sampling. In ACL 2005, 43rd Annual Meeting of
the Association for Computational Linguistics, Proceedings of the Con-
ference, 25-30 June 2005, University of Michigan, USA, Kevin Knight,
Hwee Tou Ng, and Kemal Oflazer (Eds.). The Association for Computer
Linguistics, 363–370. https://doi.org/10.3115/1219840.1219885

[4] Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger,
and Nadia Polikarpova. 2022. Type-directed program synthesis for
RESTful APIs. In PLDI ’22: 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 122–136.
https://doi.org/10.1145/3519939.3523450

[5] IntelliJ IDEA. 2022. Structural search and replace. https://www.

jetbrains.com/help/idea/structural-search-and-replace.html

[6] Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg,
Ranjit Jhala, and Nadia Polikarpova. 2020. Digging for fold: synthesis-
aided API discovery for Haskell. Proc. ACM Program. Lang. 4, OOPSLA
(2020), 205:1–205:27. https://doi.org/10.1145/3428273

[7] Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie,
and Hong Mei. 2016. Relationship-aware code search for JavaScript
frameworks. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seat-
tle, WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane
Cleland-Huang, and Zhendong Su (Eds.). ACM, 690–701. https:

//doi.org/10.1145/2950290.2950341

[8] Ziyang Li, Aravind Machiry, Binghong Chen, Mayur Naik, Ke Wang,
and Le Song. 2021. ARBITRAR: User-Guided API Misuse Detection. In
42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021. IEEE, 1400–1415. https://doi.org/10.1109/

SP40001.2021.00090

[9] Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang,
Mayur Naik, and Mukund Raghothaman. 2021. Sporq: An Interactive
Environment for Exploring Code using Query-by-Example. In UIST
’21: The 34th Annual ACM Symposium on User Interface Software and
Technology, Virtual Event, USA, October 10-14, 2021, Jeffrey Nichols,
Ranjitha Kumar, and Michael Nebeling (Eds.). ACM, 84–99. https:

//doi.org/10.1145/3472749.3474737

[10] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin
Cheung. 2018. How not to structure your database-backed web ap-
plications: a study of performance bugs in the wild. In Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica
Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 800–810.
https://doi.org/10.1145/3180155.3180194

[11] Charles Zhang and Hans-Arno Jacobsen. 2004. PRISM is research
in aSpect mining. In Companion to the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada,
John M. Vlissides and Douglas C. Schmidt (Eds.). ACM, 20–21. https:

//doi.org/10.1145/1028664.1028676

https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.1145/3519939.3523450
https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://doi.org/10.1145/3428273
https://doi.org/10.1145/2950290.2950341
https://doi.org/10.1145/2950290.2950341
https://doi.org/10.1109/SP40001.2021.00090
https://doi.org/10.1109/SP40001.2021.00090
https://doi.org/10.1145/3472749.3474737
https://doi.org/10.1145/3472749.3474737
https://doi.org/10.1145/3180155.3180194
https://doi.org/10.1145/1028664.1028676
https://doi.org/10.1145/1028664.1028676

	Abstract
	1 Introduction
	2 CodeSpider in a Nutshell
	3 Evaluation
	References

