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Abstract

Querying code conveniently is an appealing goal to the
software engineering community. This work advances this
goal by presenting a multi-modal query synthesis technique.
Given a natural language description and code examples, we
synthesize a conjunctive query extracting positive examples
and ignoring negative ones, which is further used to query
desired constructs in a program. To prune the huge search
space, we generate well-typed query sketches for refinement
by analyzing code examples and API signatures. We also
introduce two quantitative metrics to measure the quality
of candidate queries and select the best one. We have im-
plemented our approach as a tool named CopESPIDER and
evaluated it upon sixteen code querying tasks. Our experi-
mental results demonstrate its effectiveness and efficiency.
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1 Introduction

Programmers often need to explore their projects by code
querying in various scenarios of development, including
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API understanding [7], code refactoring [10], and bug detec-
tion [8]. Although there have been several industrial prod-
ucts and academic works on code querying, they often com-
promise between ease of use and capability [1, 5, 11]. Specif-
ically, most mainstream IDEs [5] provide convenient built-in
templates but only support the string matching-based search
of restrictive program constructs. Besides, query-based pro-
gram analyzers, e.g., CODEQL [1], store program constructs
with relational representations as its components and pro-
vide a collection of APIs for query writing. However, labori-
ous manual efforts are involved in query language learning
and query writing, which degrades usability significantly.
In this work, we aim to synthesize a query in a code query
language for a code querying task. Specifically, a querying
task is instantiated by a specification, where a natural lan-
guage (NL) description depicts the querying intent, and code
examples show the constructs which should be or not be
queried. For example, Fig. 1 shows the query specification
of finding the methods receiving a Log4jUtils object as a
parameter. A synthesized query leverages the components
and APIs in the query language to specify the relations of
constructs as the querying condition, which is conjunctive
and permits string predicates, supporting construct filtering
and string matching-based search simultaneously. A prac-
tical solution to our multi-modal synthesis problem would
provide a user-friendly interface for code querying.

Description: Methods receiving a parameter with Log4jUtils type.

public void foo(Log4jUtils a) { return; } //positive example
private void goo(int a) { return; } / negative example

Figure 1. An example of query specification

Unfortunately, it is non-trivial to synthesize the query
for a code querying task. First, a large number of compo-
nents and APIs in the query language induce a huge search
space [2, 4, 6], increasing the difficulty of synthesizing the
query efficiently. Second, there are often multiple query can-
didates satisfying the constraints induced by examples, while
many of them can suffer the over-fitting problem. To obtain
the target query, we have to synthesize queries efficiently
and measure the quality of query candidates effectively.

To solve the problem, we present a new synthesis tech-
nique CopESPIDER where the analyses of code examples,
query language library, and the NL description collaborate
simultaneously. To prune the search space, we analyze code
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examples to narrow down the components and APIs poten-
tially used in the query, and leverage the API signatures
to construct a type-transition net (TTN), of which each sub-
graph induces a query sketch. Then we enumerate well-typed
conjunctive queries by refinement and examine the feasibil-
ity by evaluating them upon code examples. To select the
best query for the querying task, we introduce the structural
complexity and the entity coverage to measure the quality
of candidate queries. We have evaluated CODESPIDER upon
sixteen code querying tasks, which cover various kinds of
program constructs. CODESPIDER successfully synthesizes
all the queries and consumes 3.35 seconds averagely.

2 CoODESPIDER in a Nutshell

Take the query specification in Fig. 1 as an example. CODE-
SpIDER works with the following three stages.

Sketch Generation. We diff the program constructs of
positive and negative examples to identify possible compo-
nents in the query. In Fig. 1, for example, only the methods,
modifiers, types, parameters, and identifiers are different,
and thus, the corresponding components can occur in the
query. Then we construct the TTN according to API signa-
tures and generate all the query sketches by enumerating
its subgraphs. To support string matching, we consider the
APISs that return strings in the TTN construction by default.

Query Refinement. We enumerate the sub-graphs of
the TNN and evaluate induced queries upon the code ex-
amples. Specifically, we start from the weakest conjunctive
queries, in which the condition is true, and refine the queries
by adding new edges and appending string constraints. If a
query misses positive examples, we discard it and end the re-
finement. Otherwise, we continue to strengthen conjunctive
conditions until we obtain a candidate query that separates
the positive and negative examples. In Fig. 3, for example,
query® and query1 both identify the negative examples, and
we finally obtain a candidate query?2 by refining query1. Af-
ter the refinement, we can obtain all the candidate queries.

Query Selection. To select the query, we propose the
entity coverage and the structural complexity to quantify the
query quality. First, we extract the named entities [3] of the
NL description, which indicate possible components, APIs,
and string literals in the query, and the target query tends
to cover as many entities as possible. Second, we measure
the structural complexity of a query by the number of its
conjunctions. When there are multiple candidate queries

Table 1. Description of querying tasks

ID Description (#P,#N) (#C,#A) Kind
1  Float variables of which the identifier contains “cash” (3, 1) (4,4) Var
2 Cast expressions from double-type to float-type (1,2) (6,7) Expr
3 Expressions comparing long int with int (1,2) (3, 6) Expr
4  Cast expressions casting long to int 2,1) 6,7) Expr
5 Expressions comparing a variable and Boolean literal (1,3) (4,5) Expr
6  New expressions of ArrayList (1, 1) (3,3) Expr
7  Logical-and expressions with a literal as an operand (2,2) (4,5) Expr
8  The import of LocalTime 2,1) (3,4) Stmt
9 The import of the classes in log4j (1,1) (2,2) Stmt
10 Labeled statements 2,2) (1,0) Stmt
11 If-statements with a Boolean literal as a condition 2,1) 2,1) Stmt
12 For-statements with a Boolean literal as the condition (2, 1) 2,1) Stmt
13 Public methods with void return type 2,1) (5,6)  Method
14 Methods receiving a parameter with Log4jUtils type 2,1) (4,4)  Method
15 Classes with a login method 2,1) (3,3) Class
16 Classes containing a field with float type (1,1) (4,4) Class

with the maximal entity coverage, we select the one with
the lowest structural complexity, which induces the weakest
querying condition. For example, query? is the target query
fitting the specification in Fig. 1. Although we can enforce the
modifier to be “public” by refinement, this does not increase
the entity coverage but increases the structural complexity.

3 Evaluation

We implement CODESPIDER to synthesize the queries for a
query-based program analyzer in Ant Group, while CoDE-
SPIDER is general enough to synthesize queries in other code
query languages [1]. We select the querying tasks in [9] as
a benchmark and specify the query specification manually.
As shown in the column (#P, #N) of Table 1, the numbers of
positive and negative examples are both no larger than 3.
Then we measure the time cost of CODESPIDER and examine
whether the synthesized queries are the target queries.

CopEeSPIDER successfully synthesizes all the target queries
for the sixteen querying tasks. The numbers of components
and APIs in the synthesized query are shown in the col-
umn (#C, #A) in Table 1. Actually, CODESPIDER follows the
principle of Occam’s Razor. The queries cover the maximal
numbers of entities in the NL description, mitigating the
over-fitting problem caused by code examples. Also, it tends
to select the simplest queries without unnecessary condi-
tions, which have the lowest structural complexity, so that
the queries have better generalization capability. Moreover,
CoDESPIDER obtains high efficiency. Fig. 4 shows that it fin-
ishes any synthesis in ten seconds, and most of the tasks can
be handled in less than four seconds. The average time cost
is only 3.35 seconds, evidencing its high efficiency.
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