
Complexity-Guided Container
Replacement Synthesis

Chengpeng Wang Prism Group, HKUST
Peisen Yao Prism Group, HKUST
Wensheng Tang Prism Group, HKUST
Qingkai Shi Ant Group -> Purdue University
Charles Zhang Prism Group, HKUST

Container

• General-purpose abstract data type
• Inserting, retrieving, removing and iterating over elements
• E.g., ArrayList, HashMap, HashSet, etc

• A variety of implementations

1

Performance Profile

• Resource consumption differs [Hasan, ICSE 16]

Random access:
LinkedList > ArrayList 2

Container Selection

• Programmers are often
• Unaware of how container objects are manipulated

• Focus on specific modules of applications
• Unaware of performance difference of container method calls

• Unfamiliar with new implementations provided by libraries

3

Assist programmers in finding proper container types

Our Aim

• Synthesize container replacements automatically to reduce the
resource consumption

• Container replacement
• Container types in allocation statements
• Container method calls

• Resource consumption
• Time, memory, CPU usage, energy
• Focus on time cost but can be generalized

4

Existing Studies
• Solving an optimization problem [Basios, FSE 18] [Manotas, ICSE 14]

• Enumerate container types
• Monitor resource consumption when executing test cases
• Find the optimal replacement to minimize the resource consumption

5

Existing Studies

• Solving a prediction problem [Jung, PLDI 11] [Vechev, PLDI 09]

replacement

prediction model

runtime info

pre-trained model

manually specified rule

• Profile the program to obtain runtime info
• Apply pre-trained model or pre-defined rules

• Infer the container replacement

6

Limitations of Existing Approaches

• Huge overhead
• Execute programs with test suites to profile dynamically

• Overfitting
• Optimal replacements for specific inputs rather than general inputs

• Unsoundness
• Unable to preserve behavioral equivalence, e.g., replace TreeSet with

HashSet

7

Problem Formulation

• Replace container types and container methods in the program
P and obtain a new program P’, such that

• (Behavioral equivalence) P and P’ are behavioral equivalent
• (Complexity superiority) P’ consumes less time than P for a sufficiently

large input

Behavioral Equivalence:
For any given input, P and P’ always return the same value

8

Two Critical Goals

• Which container types are exchangeable to ensure behavioral
equivalence?

• How to measure the performance of a container-manipulating
program to check complexity superiority?

9

Goal I: Behavioral Equivalence
• Which container types are exchangeable to ensure behavioral

equivalence?

• Exchangeable container types achieve the original container
usage intention.

{LinkedList, HashSet, TreeSet, …}

whether a value is in the list

10

Two Classes of Container Usage Intention

• Container-property queries
• Container-property modifiers

11

Class I: Container Property Queries
• Value ownership

• ArrayList.contains(O), HashSet.contains(O)
• Index ownership

• HashMap.containsKey(O)
• Index-value correlation

• ArrayList.get(I), HashMap.get(O)
• Size

• ArrayList.size(), HashSet.size()
• Insertion order

• LinkedHashMap.iterator()
• Key order

• TreeMap.firstKey(), TreeMap.lastKey()

12

Class II: Container Property Modifiers

• A container method can update container properties
• Support querying container properties in other program locations

increase the size by 1
add a new value
add a new value at the end

size
value ownership
index-value correlation

Modify
ArrayList.add(O):

13

Method Semantic Specification

• Decompose method semantics into container-property queries
and container-property modifiers

ArrayList.contains(O)

queries modifiers

HashSet.contains(O)

: query value ownership

{ }

{ }

{ }

{ }

ArrayList.get(I)

: query index-value correlation

{ } { }

14

Method Semantic Specification

• Decompose method semantics into container-property queries
and container-property modifiers

ArrayList.add(O)

queries modifiers

HashSet.add(O)

: increase the size by at most 1
: add a new value
: add a new value at the end

: increase the size by 1

{ }

{ }

{ }

{ }

15

Key Idea: Achieve Original Usage Intention

• Support the original container-property queries
• Modify the queried container properties as the original ones

original program

∅

{ }

16

Key Idea: Achieve Original Usage Intention

• Support the original container-property queries
• Modify the queried container properties as the original ones

ArrayList: HashSet:

17

Key Idea: Achieve Original Usage Intention

• Support the original container-property queries
• Modify the queried container properties as the original ones

Guarantee behavioral equivalence

original program new program

18

Ensuring Behavioral Equivalence

• Achieve the original usage intention with exchangeable
container types

• Support the original container-property queries
• Modify the queried container properties as the original ones

19

Goal II: Complexity Superiority

• How to measure the performance of a container-manipulating
program to check complexity superiority?

• Only measure the time costs of container method calls.

20

Method Complexity Specification

• Cost model CS
• Complexity classes

• Constant
• Amortized constant
• Logarithmic
• Amortized logarithmic
• Linear
• Amortized linear
• Super linear

• Complexity functions

time complexity of
container methods

21

Method Complexity Specification

• Cost model CS
• Constant factor

𝑡𝑐! 𝑛 : constant

𝑡𝑐" 𝑛 : amortized constant
𝑡𝑐# 𝑛 : linear

CS ArrayList. add O = 1 ⋅ tc"(n)
CS HashSet. add O = 2 ⋅ tc"(n)

22

Checking Complexity Superiority
• How to measure the performance of a container-manipulating

program to check complexity superiority?

• Introduce container complexity superiority

<
$!∈&!

𝐶𝑆 𝑓' ≤<
$∈&

𝐶𝑆 𝑓

• For each container object o, S and S’ are the sets of methods
manipulating o in P and P’, we need to ensure that

23

Key Idea: Container Complexity Superiority

• For each container object o, S and S’ are the sets of methods
manipulating o in P and P’, we need to ensure that

!
!!∈#!

𝐶𝑆 𝑓$ ≤!
!∈#

𝐶𝑆 𝑓

2 ⋅ 𝑡𝑛"(𝑛) + 𝑡𝑛#(𝑛) 4 ⋅ 𝑡𝑛"(𝑛) + 𝑡𝑛!(𝑛)

𝑡𝑐! 𝑛 : constant 𝑡𝑐" 𝑛 : amortized constant 𝑡𝑐# 𝑛 : linear
24

Cres: Synthesizing Container Replacement

• Achieve the original intention of container usage to ensure
behavioral equivalence

• Support the original container-property queries
• Modify the queried container properties as the original ones

• Achieve container complexity superiority to improve program
efficiency

• For each container object o, S and S’ are the sets of methods
manipulating o in P and P’, we need to ensure that

<
$!∈&!

𝐶𝑆 𝑓' ≤<
$∈&

𝐶𝑆 𝑓

25

Workflow of Cres

• Method semantic specification (queries, modifiers)
• Method complexity specification (complexity function, constant factor)

Program P
P'

Container Property
Analysis

Method Candidate
Identification

Synthesizer Verifier

Method
Specification

Container
Properties

Method
Candidates

26

Stage I: Container Property Analysis
• Collect queried container properties for each container object via a sound

points-to analysis

ArrayList object o2

ArrayList object o11

{isVal}

{size, isVal, isCor}

27

Stage II: Method Candidate Identification
• A method f’ is a candidate for the method call v=c.f(u) iff

• f and f’ support the same container-property queries
• f and f’ have the same modifiers on the queried container properties

ArrayList object o2

{LinkedList.contains,
ArrayList.contains,
HashSet.contains,
…}

{LinkedList.add,
ArrayList.add,
HashSet.add,
…}

{isVal}

{LinkedList.contains,
ArrayList.contains,
HashSet.contains,
…}

28

Stage III: Container Replacement Synthesis

• For each container object o, S and S’ are the sets of methods manipulating o
in P and P’, we need to ensure that

!
"!∈$!

𝐶𝑆 𝑓% ≤!
"∈$

𝐶𝑆 𝑓

ArrayList object o2

{LinkedList.contains,
ArrayList.contains,
HashSet.contains,
…}

{LinkedList.add,
ArrayList.add,
HashSet.add,
…}

2 * CS(HashSet.contains) + CS(HashSet.add) is minimal

HashSet

{LinkedList.contains,
ArrayList.contains,
HashSet.contains,
…}

29

{isVal}

Theoretical Results
• Theorem 1: The new program P’ is the behavioral equivalent to the

original program P.

• Theorem 2: The new program P’ has container complexity superiority over
the original program P.

• Theorem 3: The time complexity of the algorithm is 𝑂(𝑆! ⋅ |𝑆"|) for given
container types.

• 𝑆& and 𝑆' contain container allocation statements and container method calls,
respectively.

30

Implementation of Cres

• Implement Cres based on Pinpoint [Shi, PLDI 18]
• Flow-sensitive points-to analysis for container property analysis

• Analyze containers in Java Collection Framework
• List: ArrayList, LinkedList
• Set: HashSet, LinkedHashSet, TreeSet
• Map: HashMap, LinkedHashMap, TreeMap

31

Research Questions

• RQ1: Effectiveness
• Performance improvement brought by Cres

• RQ2: Replacement patterns
• Kinds and numbers of replacements Cres synthesize

• RQ3: Overhead
• The time and space costs of Cres

32

Evaluation: Effectiveness

• What is the improvement Cres achieves for real-world programs?

Speedup: On average 8.1%, up to 27.1% 33

Evaluation: Replacement Pattern

• Which kinds of container replacements does Cres synthesize?

71 confirmed
replacements

34

Evaluation: Time and Memory Costs

• What are the time and memory costs of Cres?

linear scalability
~ 14 minutes analyzing 384.2 KLoC 35

Interesting Findings

• Equipped with flow-insensitive pointer analysis, Cres synthesizes
74 container replacements out of 107 replacements.

• Miss several optimization opportunities due to the imprecision of
container property analysis

36

Interesting Findings

• Using randomly generated constant factors in the method
complexity specification does not affect the result as long as
they conform to a specific order.

HashSet.add(O) < LinkedHashSet.add(O)

HashSet.remove(O) < LinkedHashSet.remove(O)

𝜃# 𝜃$

𝜃% 𝜃&

𝜃# < 𝜃$
𝜃% < 𝜃&

37

Drawbacks

• Container complexity superiority does not imply complexity
superiority.

• Complexity analysis/WCET analysis are impractical for real-world programs.
• Need a precise and computable complexity guidance

<
$!∈&!

𝐶𝑆 𝑓' ≤ <
$∈&

𝐶𝑆(𝑓) Time complexity of P’ ≤ Time complexity of P

38

Drawbacks

• Unaware of usage intention of loops
• Example from IoTDB: pageReader is a LinkedList object

Cres: LinkedList => ArrayList
Optimal solution: use iterators

39

Conclusions

• A new program abstraction with
• Container property & Method semantic specification
• Cost model & Method complexity specification

• An efficient and sound synthesis algorithm Cres
• Ensuring behavioral equivalence with container property analysis
• Improving program efficiency with complexity-guided synthesis

40

Thank you for your listening!

41

