
LibAlchemy: A Two-Layer Persistent Summary Design for Taming
Third-Party Libraries in Static Bug-Finding Systems
Rongxin Wu

Xiamen Key Laboratory of Intelligent
Storage and Computing, School of
Informatics, Xiamen University

Xiamen, China
wurongxin@xmu.edu.cn

Yuxuan He
Xiamen Key Laboratory of Intelligent
Storage and Computing, School of
Informatics, Xiamen University

Xiamen, China
yuxuanhe@stu.xmu.edu.cn

Jiafeng Huang
Xiamen Key Laboratory of Intelligent
Storage and Computing, School of
Informatics, Xiamen University

Xiamen, China
thghjf@stu.xmu.edu.cn

Chengpeng Wang
The Hong Kong University of Science

and Technology
Hong Kong, China
cwangch@cse.ust.hk

Wensheng Tang
The Hong Kong University of Science

and Technology
Hong Kong, China
wtangae@cse.ust.hk

Qingkai Shi
State Key Laboratory for Novel
Software Technology, Nanjing

University
Nanjing, China

qingkaishi@nju.edu.cn

Xiao Xiao
Person

Hang Zhou, China
frogxx@gmail.com

Charles Zhang
The Hong Kong University of Science

and Technology
Hong Kong, China
charlesz@cse.ust.hk

ABSTRACT

Despite the benefits of using third-party libraries (TPLs), the mis-
use of TPL functions raises quality and security concerns. Using
traditional static analysis to detect bugs caused by TPL function
is non-trivial. One promising solution would be to automatically
generate and persist the summaries of TPL functions offline and
then reuse these summaries in compositional static analysis online.
However, when dealing with millions of lines of TPL code, the
summaries designed by existing studies suffer from an unresolved
paradox. That is, a highly precise form of summary leads to an unaf-
fordable space and time overhead, while an imprecise one seriously
hurts its precision or recall.

To address the paradox, we propose a novel two-layer summary
design. The first layer utilizes a line-sized program representation
known as the program dependence graph to compactly encode
path conditions, while the second layer encodes bug-type-specific
properties. We implemented our idea as a tool called LibAlchemy
and evaluated it on fifteen mature and extensively checked open-
source projects. Experimental results show that LibAlchemy can
check over ten million lines of code within ten hours. LibAlchemy
has detected 55 true bugs with a high precision of 90.16%, eleven of
which have been assigned CVE IDs. Compared to whole-program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639132

analysis and the conventional design of path-sensitively precise
summaries, LibAlchemy achieves an 18.56× and 12.77× speedup
and saves 91.49% and 90.51% of memory usage, respectively.

KEYWORDS

static bug-finding, function summary, third-party library

ACM Reference Format:

Rongxin Wu, Yuxuan He, Jiafeng Huang, Chengpeng Wang, Wensheng
Tang, Qingkai Shi, Xiao Xiao, and Charles Zhang. 2024. LibAlchemy: A
Two-Layer Persistent Summary Design for Taming Third-Party Libraries in
Static Bug-Finding Systems. In 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3639132

1 INTRODUCTION

Third-party libraries (TPLs) enable developers to integrate pretested
and reusable software components developed by other vendors,
thus saving development costs. Despite the benefits, the usage of
TPLs raises concerns about software quality and has become one
of the most severe security threats (e.g., OWASP Top 10 in 2013 [1],
2017 [2], and 2021 [3]). Thus, the security issues of TPLs have
attracted considerable attention in both industry and academia.

Typically, the usage of TPLs that are known to be vulnerable
(e.g., published in the CVE database) receives more attention from
developers due to the significant impact of standard-based vul-
nerability management. Various well-established techniques, such
as software composition analysis [4–7] and code clone detection
[8–11], are applicable to handle them. Meanwhile, developers may
easily miss security bugs caused by the misuse of non-vulnerable
TPL functions due to the need for a deeper understanding of the
implementation details of TPL functions.

https://doi.org/10.1145/3597503.3639132
https://doi.org/10.1145/3597503.3639132

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Rongxin Wu, Yuxuan He, Jiafeng Huang, Chengpeng Wang, Wensheng Tang, Qingkai Shi, Xiao Xiao, and Charles Zhang

For example, Figure 1 shows a null pointer dereference (NPD)
bug caused by the misuse of TPL functions, simplified from a real-
world bug [12]. In the application project, opusfile-0.12, the function
ogg_sync_buffer in the library libogg-1.3.4 is called at Line 4 and
will return a null pointer under certain conditions. However, the
application function op_open1 does not check this return value
and directly uses it as a parameter of the function memcpy in the
library glibc-2.31 (Figure 1 (b)) at Line 5, eventually leads to a null
pointer dereference at Line 35. It is non-trivial for developers to
find such bugs because it requires examining the implementation
of the library code. Existing static TPL function misuse detection
techniques [13–15], which extract the typical usage patterns of TPL
functions from several samples and detect anomalous TPL function
usages by comparing them with the typical patterns, would help to
find such bugs. However, they would fail to distinguish the buggy
and benign TPL function usages because they treat TPL functions
as black boxes. Take the same code snippet in Figure 1(a) as an
example. If the version of function memcpy invoked at Line 5 has
evolved to the one in Figure 1 (c), it will not result in a null pointer
dereference due to the null pointer guard at Line 40. However,
the existing TPL function misuse detection techniques will still
consider it as buggy. This indicates that it is essential to make static
bug-finding techniques to understand the path conditions of TPL
function usage (i.e., path sensitivity).

Problems of State-of-the-Art Techniques. Research on applying
static analysis to find bugs in software systems has been contin-
uously developed for decades [16–35]. Despite this tremendous
research progress, we observe the difficulty of applying static bug
detection techniques in the presence of numerous TPLs.

One possible solution is to perform whole-program analysis in
both application and library code [23, 26, 27]. However, as shown
by existing studies [16, 36], the size of dependency libraries can
significantly dwarf the application code and thus raises the grand
challenge for the scalability of analysis. For example, vim, a widely-
used text editor with only 469K lines of code, transitively depends
on 41 libraries with 4.25 million lines of code. When detecting
bugs in such a scale using the state-of-the-art path-sensitive static
analyzer, it exhausts 460G of memory after running for only 25
minutes in our evaluation (See § 6).

The second possible solution is applying aggressive or conser-
vative approximations for the missing library behaviors [37]. For
example, when performing taint analysis, aggressive approximation
assumes that a tainted argument of a callee function will always
flow into the return value of this callee function. The other way
around, the conservative approximation takes the opposite assump-
tion. If the approximation is inconsistent with the missing library
behaviors, it will inevitably lead to false positives or negatives.

The third possible solution is to provide precise summaries of
the missing library behaviors. Some industrial tools resort to hand-
written summaries for commonly-used libraries (e.g., the GNU
C library) [37]. At the same time, some research studies explore
semi-automated techniques to reduce false positives by inferring
specifications from the oracle or hand-written summaries for a set
of TPL functions [18, 20, 38, 39]. Although the approaches men-
tioned above would be precise, constructing a human oracle is

time-consuming, labor-intensive, and error-prone when the num-
ber of TPL functions is large. An ideal solution is to automatically
generate precise summaries of all TPL functions offline and reuse
these summaries when static bug-finding systems working on appli-
cation code encounter these TPL functions. Note that the concept of
summaries is not novel and has been widely used in compositional
or incremental static analysis. However, the design of summaries
by the existing studies cannot fulfill the requirements of detecting
bugs caused by TPL function misuse for the following three reasons.
First, as pointed out by a prior study [16], summaries in a signifi-
cant proportion of existing studies are designed and reused in the
context of the same analysis process [24, 31, 33, 40–42], and there
is no easy way to serialize and reuse them in multiple analysis runs.
Second, another category of summaries is designed for caching
results across runs of an analysis [43–47] but limits its capability to
reuse results from the previous analysis run on the same program.
Third, some summaries can be reused in multiple runs of analysis
and across different program modules [16, 34, 35, 48, 49]. However,
they suffer from the paradox between precision, the cost of time,
and space overhead. Specifically, prior studies have demonstrated
that path-sensitive precision is necessary for detecting many secu-
rity bugs like memory-related errors [16, 34, 35], e.g., null pointer
dereference andmemory leak. Unfortunately, current path-sensitive
summaries [48, 49] typically take the SMT constraints to represent
path conditions, while this induces a high cost of time and space
overhead. In our experiment, for instance, we observed that it takes
over 16 hours and more than 450GB to persist the summaries for
the libraries with over 1 MLoC.

Our Solution. We base our idea to resolve the paradox on the
observation that, in an actual program, the explosive size of path
conditions consumes enormous amounts of memory when per-
forming path-sensitive analysis [50], and this implies a high space
overhead if using the heavyweight form of path conditions, i.e.,
SMT constraints, let alone the high time overhead. Thus, in this
work, we propose a two-layer summary design to mitigate the high
cost while preserving the high precision.

In the first layer, we use a program dependence graph as the
summary, a linear-sized program representation that essentially
encodes the same program information as path conditions. The first-
layer summary design can guarantee the low cost of persistence
and the capability of faithfully recovering path conditions.

In the second layer, to avoid repetitively verifying bug-type-
specific properties in TPL functions that have been analyzed, we
use data-flow paths on PDG as the bug-type-specific summaries
and design an efficient algorithm to recover path conditions. To
mitigate the high cost of persisting the explosive size of candidate
paths in TPL functions, we only collect the data-flow paths with
specific start and end points for persistence. These persistent paths
capture a function’s reachability relation among the parameter ver-
tices, return vertices, and the bug-type-specific “source” and “sink”
vertices at the intraprocedural level. Then, we propose an approach
to recovering the interprocedural path conditions by on-demand
stitching these intraprocedural data-flow paths. The second-layer
summary design enables efficient path condition recovery with low
space overhead.

LibAlchemy: A Two-Layer Persistent Summary Design for Taming Third-Party Libraries in Static Bug-Finding Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 static int op_open1(obj* data, int size) {
2
3 char* buffer = NULL;
4 obj* o = ogg_sync_buffer(&buffer, size);
5 memcpy(data, o, sizeof(obj));
6
7 }

(a) code in application project opusfile-0.12

33 void* memcpy(void* dst, void* src, size_t len) {
34 while (len) {
35 dst[0] = src[0];
36
37 }
38 }

(b) simplified code in TPL glibc-2.31

39 void* memcpy(void* dst, void* src, size_t len){
40 if (!dst || !src) return;
41 while (len) {
42 dst[0] = src[0];
43
44 }
45 }

(c) a safe version of memcpy

8 obj* ogg_sync_buffer(char** ptr, int sz) {
9 obj* cRet = NULL;
10
11 if (sz <= MAX) // sizeof(obj) is constant 20
12 cRet = (obj*)alloc(sizeof(obj));
13
14 if (cRet != NULL){
15 cRet->buf = (char*)alloc(sz);
16 if (cRet->buf == NULL) {
17 cRet = NULL;
18 } else {
19 *ptr = cRet->buf;
20 }
21 }
22
23 return cRet;
24 }

25 void* alloc(int sz){
26 void* ret = NULL;
27
28 if (sz >= 0)
29 ret = malloc(sz); // malloc may return null
30
31 return ret;
32 }

(d) simplified code in TPL libogg-1.3.4

Figure 1: A null pointer dereference caused by the misuse of TPL functions

Table 1: Data flow path and path condition (i.e., the conjunction in the second and third columns) to persist using a naïve

approach. We use 𝑣𝑖 to denote the value of the variable or constant 𝑣 at Line 𝑖. Note that the value of null is the constant 0.

Data-Flow Path Data-Dependence Condition Control-Dependence Condition

𝑛𝑢𝑙𝑙 ↩→ 𝑐𝑅𝑒𝑡9 ↩→ 𝑐𝑅𝑒𝑡14 ↩→ 𝑐𝑅𝑒𝑡23 0 = cRet9 = cRet14 = cRet23 ¬(sz11 ≤ MAX) ∧ ¬(cRet14 ≠ 0) ∧ sz8 = sz11
𝑛𝑢𝑙𝑙 ↩→ ret26 ↩→ ret31 ↩→ cRet12 ↩→ cRet14 ↩→ cRet23 0 = ret26 = ret31 = cRet12 = cRet14 = cRet23 ¬(sz28 ≥ 0) ∧ sz11 ≤ MAX ∧ ¬(cRet14 ≠ 0) ∧ sz28 = sz25 = sz15 = sz8 = sz11
𝑛𝑢𝑙𝑙 ↩→ ret29 ↩→ ret31 ↩→ cRet12 ↩→ cRet14 ↩→ cRet23 0 = ret29 = ret31 = cRet12 = cRet14 = cRet23 sz28 ≥ 0 ∧ sz11 ≤ MAX ∧ ¬(cRet14 ≠ 0) ∧ sz28 = sz25 = sz15 = sz8 = sz11

𝑛𝑢𝑙𝑙 ↩→ ret17 ↩→ ret20 ↩→ cRet23 0 = ret17 = ret20 = cRet23 buf16 = 0 ∧ cRet14 ≠ 0 ∧ cRet14 = · · · ∧ buf16 = · · · (omitted)

cRet14 cRet20

cRet23

return cRet23
cRet->buf15 = alloc(sz15)

sz11 <= MAX

cRet14 != null14

cRet17 = null17

𝜙

ret29 ret26

ret31

return ret31

ret29 = malloc(..)

sz25

ret26 = null26

𝜙

false-control-dependence

true-control-dependence

（1

)1

)2

（2

sz28 >= 0

sz8

cRet9 = null9 cRet12= alloc(sizeof(obj)

cRet12 cRet9

cRet14𝜙

cRet14 cRet17

cRet20𝜙

cRet->buf16 == null16

*ptr19 = cRet->buf19

data-dependence

ptr8
3

14

13

4

8

21

6 7

5

9
11

10

15 16

17

19

18

20

12

Figure 2: The PDG for function ogg_sync_buffer and alloc. For each 𝜙 node, whenever a true-control-dependence edge connects

one of its operands to a condition, a false-control-dependence edge connects the other to the same one and is omitted for clarity.

Summary of Results.We implemented LibAlchemy 1 on top of
the value flow analysis framework [51] to detect four representative
source-sink style bugs, including null pointer dereference (NPD),
use-after-free (UAF), use of uninitialized values (UUV), and mem-
ory leak (ML). The evaluation demonstrated the effectiveness of
LibAlchemy in detecting security bugs caused by TPL function mis-
use. It can check over ten million lines of code within ten hours and
detect 55 true bugs with 90.16% precision in fifteen popular open-
source projects. Due to the high security impact, eleven of them are

1Alchemy is an ancient branch of natural philosophy that aims to purify, mature, and
perfect certain materials. LibAlchemy indicates that the goal of this work is to obtain
the purified static analysis results of third-party libraries.

even assigned CVE identifiers. Compared with the whole-program
analysis using both application and library code, LibAlchemy can
achieve 18.56× speedup and save an average of 91.49% of memory
usage. Compared with the conventional path-sensitive summary
design, in terms of the summary persistence process, LibAlchemy
achieves more than 94.98% of space reduction and 97.05% of time
reduction; for the summary reusing process, LibAlchemy achieves
12.77× speedup and saves 90.51% of memory usage on average.

2 MOTIVATING EXAMPLE

Importance of Path Sensitivity. Path sensitivity is crucial for a
precise static analysis of memory-related bugs in C/C++ programs.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Rongxin Wu, Yuxuan He, Jiafeng Huang, Chengpeng Wang, Wensheng Tang, Qingkai Shi, Xiao Xiao, and Charles Zhang

For example, Figure 1 (b) and Figure 1 (c) demonstrate an unsafe
and safe version of the library function memcpy, respectively. The
only difference is that the safe version in Figure 1 (c) includes a
branch condition at Line 40 that checks if the parameters dst and
src could be null pointers, thereby avoiding the potential NPD at
Line 42. A path-insensitive approach ignores such conditions and
will generate the same summary for both versions, i.e., an NPD
may happen at Lines 35 and 42 in Figure 1 (b) and Figure 1 (c),
respectively. Clearly, such a summary is not precise enough for
the safe version. Using this imprecise summary, a program that
calls this safe version will be regarded as calling the original unsafe
version. For example, even though we call the safe version at Line 5
in Figure 1 (a), due to the imprecise summary, a static analyzer will
report a possible NPD at Line 5, which, however, is a false positive
due to the branch condition at Line 40.

Problems of a Naïve Approach. Generally, a path-sensitive static
analyzer is expected to analyze each path in a program and use
path conditions to infer its path feasibility. Hence, a naïve approach
to persisting summaries for TPL functions is to persist all possible
bug-inducing paths and their path conditions. For example, Table 1
lists all paths in the TPL function ogg_sync_buffer that may return a
null pointer to the client function and their path conditions. When
analyzing the client in Figure 1 (a), we can reason whether the
pointer o is null and check if it will lead to an NPD at Line 5. For
instance, the first path in Table 1 means that the null pointer at
Line 9 is returned to the caller function with the path condition
shown in the second and third columns. When finding bugs in a
caller function, we can check if this path condition is satisfiable
under other conditions from the caller function.

While the naïve approach ensures the precision of path sensitiv-
ity, it may lead to critical performance issues due to two problems.
First, a program may have an exponential number of paths (known
as the path explosion problem). Enumerating and persisting all
these paths could be in exponential complexity and, thus, impracti-
cal. Second, many of these paths share path conditions. Repetitively
persisting these shared conditions is unnecessary and leads to a
large space overhead. For example, in Table 1, where we use 𝑣𝑖 to
denote the value of the variable 𝑣 at Line 𝑖 , the first path and the
second share the formula sz11 ≤ MAX in their path conditions.

The Approach in a Nutshell. The basic idea to address the two
problems mentioned above is to find a highly-compressed data
structure that must satisfy three requirements to persist paths and
path conditions with little overhead. First, the data structure should
be linear with the program size to keep the persistence overhead
acceptable, even for large-scale TPLs. Second, we should efficiently
recover path conditions from the data structure to avoid repetitive
analysis of TPLs. For instance, we can directly persist the source
code of TPLs, which satisfies the first requirement. However, when
analyzing a program using the TPLs, we must recompute the path
conditions from the TPLs, which is costly. Third, since detecting
different bugs requires different information from TPLs, the data
structure should include bug-type-specific information.

We observe that the program dependence graph (PDG), a classic
intermediate program representation, satisfies the requirements
mentioned above and, thus, can serve as the highly-compressed data
structure of TPL summaries. Figure 2 shows the PDG of the TPL

PDG Building

Dependency
Solver

Call-Graph

S
u

m
m

a
ry

 In
d

e
x

TPL-PDG

TPL-Summary

App-Summary

App Code

Path-Condition
Recovery

Summary
Generation

Compositional
Bug Detection

SMT Solver

Call Graph
Analysis

Control and Data
Dependence Analysis

Pointer
Analysis

Foundational Analysis

General
Summary
DataBase

Bug-Specific
Summary
DataBase

App-PDG

Figure 3: Architecture of LibAlchemy.

functions in Figure 1 (d), where the functions have been converted
to SSA form. In the figure, we use 𝑣𝑖 to denote the value of the
variable or constant 𝑣 at Line 𝑖 . Basically, a PDG includes data-
dependence edges and two kinds of control-dependence edges, as
shown in the figure. A data-dependence edge may be labeled by
a left-parenthesis (𝑖 and right-parenthesis)𝑖 , respectively, if the
edge stands for a dependence relation at the entry and the exits of
a callee function. The subscripts of the parentheses pair the entry
(function call) and the exit (function return) at a call site. A true-
and false-control-dependence edge means a program statement (i.e.,
the source of the edge) is reachable at runtime only if the condition
it depends on (i.e., the destination of the edge) is evaluated to be
true and false, respectively. Each node in the figure is either a
statement or a 𝜙 node representing a value that merges multiple
values from different branches. For each 𝜙 node, whenever one of
its operands has a true-control-dependence edge to a condition,
the other operand will have a false-control-dependence edge to the
condition. The latter is omitted to keep the figure clear.

As an intermediate program representation, it is well-known
that PDG is of linear size with the program and thus satisfies our
first requirement. Also, we can recover the path condition via a
simple graph traversal for a given data-flow path. For instance,
for the first data-flow path in Table 1, i.e., 1○↩→ 6○↩→ 9○↩→ 14○,
where a numbered circle indicates a node of the PDG, we can
collect its path condition from two aspects: (1) The values along
the data-flow path have the same value, so we have the data-
dependence condition 0 = cRet9 = cRet14 = cRet23. (2) We have
the condition ¬(sz11 ≤ MAX) ∧ ¬(cRet14 ≠ 0) along the control-
dependence edges and the condition sz8 = sz11 restricting the values
in the control-dependence, so we can obtain the control-dependence
condition by taking the conjunction of them. For the third re-
quirement, bug-type-specific information can be easily recorded
as data-flow paths in the figure. For instance, for checking the
NPD bug we illustrated before, we can record the data-flow path
1○↩→ 6○↩→ 9○↩→ 14○, meaning that the TPL function may return
a null pointer. Note that a data-flow path is much more compact
than a conventional program path because it skips any unnecessary
control flows in the code via data-flow relations. We detail this in
the next section.

LibAlchemy: A Two-Layer Persistent Summary Design for Taming Third-Party Libraries in Static Bug-Finding Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 3 shows the architecture of our system. The input is the
application code of which we would like to check the safety. Our
static analysis first performs several fundamental analyses, such
as pointer analysis and call graph analysis, to build the control
and data-dependencies, yielding the PDG of the application code.
During the call graph analysis, if a TPL function call is found, wewill
send a query request to our database. This enables the database to
prepare any persisted summaries for further analysis. After building
the PDGs of the application code, we connect them to the PDGs
of TPL functions that the application depends on. As a result, we
obtain a complete PDG depicting the control and data-dependencies
from both the application code and the TPL functions. Finally, we
check bugs using the complete PDG by querying data-flow paths
and their path conditions. The path conditions are solved via an
SMT solver. Since any application code could be used as a TPL in the
future, we also persist the summaries of the application code into
the database, which gradually enriches the database and empowers
our bug-finding system.

3 PRELIMINARIES

This section presents several preliminaries of LibAlchemy. We
first introduce the program dependence graph (§ 3.1) and then
formally define feasible data-flow paths in the graph (§ 3.2). Lastly,
we introduce static bug-finding (§ 3.3), which is formulated as a
source-sink feasible path problem.

3.1 Program Dependence Graph

To statically analyze a program, we utilize a classical graph represen-
tation, named program dependence graph (PDG), to depict the data
flows in the program and encode their corresponding conditions.

Definition 3.1. (Program Dependence Graph) The program de-
pendence graph of a program 𝑃 is (𝑉 , 𝐸𝑑 , 𝐸𝑐 , ℓ𝑑 , ℓ𝑐), where
• 𝑉 contains the vertices that indicate the statements or, equiva-
lently, the values defined by the statements.
• 𝑣1 ↩→ 𝑣2 ∈ 𝐸𝑑 ⊆ 𝑉 × 𝑉 is a data-dependence edge, indicating
that 𝑣2 uses the value defined by 𝑣1.
• 𝑣1 ⇀ 𝑣2 ∈ 𝐸𝑐 ⊆ 𝑉 ×𝑉 is a control-dependence edge, indicating
that 𝑣2 is an if-statement and 𝑣1 is reachable when the if-condition
of 𝑣2 is satisfied.
• ℓ𝑑 maps each data-dependence edge to a parenthesis. The values
of ℓ𝑑 (𝑣1 ↩→ 𝑣2) indicate the function calls and returns at different
call sites, which are depicted by the left and right parentheses,
respectively. For other edges, ℓ𝑑 (𝑣1 ↩→ 𝑣2) = 𝜀.
• ℓ𝑐 maps each control-dependence edge to true or false, indicating
the true or false branches, respectively.

Example 3.1. Figure 2 shows the PDGof the program in Figure 1(d).
The data-dependence edge from 16○ to 18○ shows that the value of
ret defined at Line 26 is returned by alloc. The control-dependence
edge from 7○ to 11○ indicates that the value of cRet after the if-
statement is affected by whether cRet→ buf is null at Line 12. The
edges labeled with parentheses show two invocations of alloc.

Following existing studies [48, 52], we unroll the loops and re-
cursive functions before the analysis, and thus, a PDG is essentially
a directed acyclic graph (DAG). Additionally, the PDG resolves

indirect data-dependencies introduced by pointers. The construc-
tion of the PDG is not a focus of our work, and we utilize existing
techniques [50, 51] as an off-the-shelf module in our analysis.

3.2 Feasible Data-Flow Path

Given a PDG, we can reason how the data flows of interest are
propagated by inspecting a particular class of paths, namely the
feasible data-flow paths. Before defining them formally, we first
introduce the concept of the path condition.

Definition 3.2. (Path Condition) Consider a data-flow path 𝑝 :
𝑢1 ↩→ · · · ↩→ 𝑢𝑘 in the PDG 𝐺 = (𝑉 , 𝐸𝑑 , 𝐸𝑐 , ℓ𝑑 , ℓ𝑐) of a program 𝑃 ,
where 𝑢𝑖 ↩→ 𝑢𝑖+1 ∈ 𝐸𝑑 for 1 ≤ 𝑖 ≤ (𝑘 − 1). The path condition
𝐶 (𝑝) is the constraint over𝑉 that holds if and only if the data flows
along 𝑝 happen in a concrete execution.

As shown in Definition 3.1, a PDG encodes the data-dependence
and control-dependence simultaneously. Based on the PDG, we can
track the data-flow paths of interest along the data-dependence
edges and recover the condition of the data-flow path based on two
kinds of dependencies. Furthermore, we can define the notion of
feasible data-flow paths as follows.

Definition 3.3. (Feasible Data-Flow Path) Given a PDG 𝐺 =

(𝑉 , 𝐸𝑑 , 𝐸𝑐 , ℓ𝑑 , ℓ𝑐), a data-flow path 𝑝 : 𝑢1 ↩→ · · · ↩→ 𝑢𝑘 is feasible if
and only if its path condition 𝐶 (𝑝) is satisfiable and its label string
L(𝑝) belongs the extended Dyck-CFL [53].

Example 3.2. Consider the data-flow path 1○↩→ 6○↩→ 9○↩→ 14○,
which corresponds to the first path in Table 1. We get the path
condition by taking the conjunction with two conditions in the first
row of Table 1. Obviously, the path condition is satisfiable, so the
data-flow path is feasible.

3.3 Static Bug-Finding

Given a program, we can leverage its PDG to detect various bugs
statically. Before providing concrete examples, we first introduce
the source-sink feasibility problem, which further enables us to
formulate the detection of various types of bugs.

Definition 3.4. (Source-Sink Feasibility) Given 𝑣𝑠𝑟𝑐 , 𝑣𝑠𝑖𝑛𝑘 ∈ 𝑉 ,
the source-sink feasibility from 𝑣𝑠𝑟𝑐 to 𝑣𝑠𝑖𝑛𝑘 determines whether a
feasible data-flow path exists from 𝑣𝑠𝑟𝑐 to 𝑣𝑠𝑖𝑛𝑘 .

The source-sink feasibility serves as an expressive formulation
of static bug-finding. Many bug detectors can be formalized as the
instantiations of source-sink feasibility queries. Formally, their bug
specifications are defined as follows.

Definition 3.5. (Bug Specification) A bug specification 𝜏 is a triple
(𝜎𝑠𝑟𝑐 , 𝜎𝑠𝑖𝑛𝑘 , 𝛿𝑟𝑒𝑎𝑐ℎ). Here, the predicates 𝜎𝑠𝑟𝑐 and 𝜎𝑠𝑖𝑛𝑘 depict the
properties the sources and sinks should satisfy, respectively. When
the indicator 𝛿𝑟𝑒𝑎𝑐ℎ is true, a bug occurs if a source can reach a
sink via a feasible data-flow path. Otherwise, a bug occurs if there
exists no feasible path from a source to a sink.

It is worth noting that while Definition 3.5 does not cover all
possible bug types, it has covered a wide range of them, which
are often referred to as the source-not-sink bug types and source-
must-sink bugs [54]. In what follows, we use NPD and ML as two
instances to demonstrate the scope of our static bug-finding system.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Rongxin Wu, Yuxuan He, Jiafeng Huang, Chengpeng Wang, Wensheng Tang, Qingkai Shi, Xiao Xiao, and Charles Zhang

Example 3.3. (Null Pointer Dereference) We define 𝜎𝑠𝑟𝑐 (𝑣) to
decide whether 𝑣 is 𝑎 = NULL, where 𝑎 is a pointer expression.
𝜎𝑠𝑖𝑛𝑘 (𝑣) is true if and only if 𝑣 accesses the memory object pointed
by a pointer expression. Besides, 𝛿𝑟𝑒𝑎𝑐ℎ is true. To detect NPD,
we need to examine whether a feasible data-flow path connects a
source to a sink. Thus, NPD is a source-not-sink bug type.

Example 3.4. (Memory Leak) 𝜎𝑠𝑟𝑐 (𝑣) is true if and only if 𝑣 is
𝑎 = malloc(), where 𝑎 is an arbitrary pointer expression. 𝜎𝑠𝑖𝑛𝑘 (𝑣)
is true if and only if 𝑣 is free(𝑎). Meanwhile, 𝛿𝑟𝑒𝑎𝑐ℎ is set to false. If
a source cannot reach a sink in the PDG, a potential memory leak
may happen. Hence, ML is a source-must-sink bug type.

According to Definition 3.3, determining the source-sink feasibil-
ity involves examining the satisfiability of the path condition and
checking whether the label string belongs to the extended Dyck-
CFL, which ensures the path and context sensitivity, respectively.
However, achieving such precision is far from trivial, especially in
the presence of TPLs. Even a small-size application can rely on a
large number of TPLs, increasing the total size of the analyzed code.
Besides, redundant reasoning of commonly-used TPLs wastes enor-
mous analysis resources, such as time and memory. To tame TPLs
in static bug-finding, we demonstrate a system named LibAlchemy
to persist the summaries of TPLs, which can significantly improve
the scalability of static bug-finding.

4 LIBALCHEMY SYSTEM DESIGN

This section presents the design of LibAlchemy. To reuse the anal-
ysis results of TPLs, we propose a multi-layer summary design
(§ 4.1), which supports us in collecting bug-related data-flow paths
in TPLs and recovering path conditions on demand (§ 4.2). Lastly,
we demonstrate the overall algorithm of static bug-finding with
our persistence design (§ 4.3).

4.1 Bug-Type-Specific Summary

As shown in § 3.3, the static bug-finding explores feasible paths
from a specific form of source and sink. In the presence of the TPLs,
such feasible paths are the concatenations of specific data-flow
paths in the TPLs and applications. Based on this intuition, we
define the bug-type-specific summary formally.

Definition 4.1. (Bug-Type-Specific Summary) Given a bug speci-
fication and the PDG of a program, the bug-type-specific summary
𝑆 maps a pair of vertices (𝑢1, 𝑢2) to a set of data-flow paths, where
(𝑢1, 𝑢2) ∈ (𝑉 𝑓

𝑠𝑟𝑐 ∪𝑉
𝑓
𝑎𝑟𝑔 ∪𝑉

𝑓
𝑜𝑢𝑡) × (𝑉

𝑓

𝑠𝑖𝑛𝑘
∪𝑉 𝑓

𝑖𝑛
∪𝑉 𝑓

𝑟𝑒𝑡). Here,𝑉
𝑓
𝑠𝑟𝑐 and

𝑉
𝑓

𝑠𝑖𝑛𝑘
contain the sources and sinks in the function 𝑓 , respectively,

while 𝑉 𝑓
𝑎𝑟𝑔 , 𝑉

𝑓
𝑟𝑒𝑡 , 𝑉

𝑓

𝑖𝑛
, and 𝑉 𝑓

𝑜𝑢𝑡 contain the arguments, returns, in-
puts, and outputs of 𝑓 , respectively.

Intuitively, the bug-type-specific summary abstracts the seman-
tics of TPL functions with respect to the bug specification. Although
a lot of nodes and paths may exist in the PDG of a TPL, only a few
critical data-flow paths really matter in the bug-finding. From a
high-level perspective, the bug-type-specific summary provides a
compact semantic signature of the TPL, guiding the static bug finder
to delve into the TPL functions in the analysis of the application.

Example 4.1. For the NPD detection, we can obtain a bug-type-
specific summary summarizing the data-flow path 5○ ↩→ 6○ ↩→

9○ ↩→ 14○. The path shows the propagation of the null value, causing
an NPD bug in the program as shown in Figure 1.

Note that several summaries are shared in the detection of dif-
ferent bug types. Specifically, if (𝑢1, 𝑢2) ∈ (𝑉 𝑓

𝑎𝑟𝑔 ×𝑉
𝑓

𝑖𝑛
) ∪ (𝑉 𝑓

𝑎𝑟𝑔 ×
𝑉
𝑓
𝑟𝑒𝑡) ∪ (𝑉

𝑓
𝑜𝑢𝑡 ×𝑉

𝑓

𝑖𝑛
) ∪ (𝑉 𝑓

𝑜𝑢𝑡 ×𝑉
𝑓
𝑟𝑒𝑡), we can safely reuse them as the

summarized data-flow paths do not change. Thus, we reuse the four
kinds of summaries and avoid generating and storing duplicates
for different bug types.

4.2 TPL Summary Persistence

The bug-type-specific summaries depict all possible ways of form-
ing a data-flow path that potentially triggers a bug. To avoid analyz-
ing a TPL redundantly, we need to preserve the bug-type-specific
summary of the TPL for each bug type. In this section, we first
present how to design the summary for a TPL (§ 4.2.1) and then
propose an algorithm to achieve the summary persistence (§ 4.2.2).

4.2.1 Two-layer Summary. To achieve path sensitivity, we can ex-
plicitly persist the path condition of each summarized data-flow
path. However, deep calling contexts can dramatically increase the
sizes of path conditions, which introduces massive overhead in ana-
lyzing applications heavily using TPLs. Also, not all the summarized
data-flow paths can form a path indicating a bug, so exhaustively
persisting path conditions introduces unnecessary overhead.

Interestingly, we notice that the path conditions and the PDG are
synergic, i.e., the path conditions have been sparsely encoded on
the PDG already. Meanwhile, the PDG can be utilized to recover the
path conditions for the bug-type-specific summaries of different
bug types and, thus, serves as a sharing representation of path
conditions. Therefore, we propose the two-layer summary for a
TPL to avoid unnecessary storage.

Definition 4.2. (Two-layer Summary) Given a program 𝑃 and a
bug specification, the two-layer summary of 𝑃 is (𝐺, 𝑆), where 𝐺
is the PDG of the program 𝑃 as its general summary, and 𝑆 is the
bug-type-specific summary of the program 𝑃 .

Example 4.2. For the TPL libogg-1.3.4 in Figure 1(d), we obtain
the PDG in Figure 2 as its general summary. For NPD detection, we
construct the bug-type-specific summaries of function alloc:

𝑆 (15○, 20○) = { 15○ ↩→ 18○ ↩→ 20○}
𝑆 (16○, 20○) = { 16○ ↩→ 18○ ↩→ 20○}

Similarly, we can obtain the bug-type-specific summaries of func-
tion ogg_sync_buffer as follows:

𝑆 (3○, 12○) = { 3○ ↩→ 12○}
𝑆 (1○, 14○) = { 1○ ↩→ 6○ ↩→ 9○ ↩→ 14○}
𝑆 (2○, 14○) = { 2○ ↩→ 7○ ↩→ 9○ ↩→ 14○}
𝑆 (5○, 14○) = { 5○ ↩→ 6○ ↩→ 9○ ↩→ 14○}

Then we can recover the path condition for each data-flow path,
for example, the path in Example 3.2.

The two-layer summary design does not actually introduce large
memory overhead. First, the PDG is a sparse graph. The number of
vertices is linear to the program size, while the number of edges
is almost linear to the number of vertices. The cost of persisting
an entire PDG is affordable for a large TPL. Second, we only track

LibAlchemy: A Two-Layer Persistent Summary Design for Taming Third-Party Libraries in Static Bug-Finding Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Algorithm 1: Persisting TPL summaries
1 Procedure persistSmry(Libs, 𝜎𝑠𝑟𝑐 , 𝜎𝑠𝑖𝑛𝑘 , 𝜏 = (𝜎𝑠𝑟𝑐 , 𝜎𝑠𝑖𝑛𝑘 , 𝛿𝑟𝑒𝑎𝑐ℎ)):
2 Libs← TopologicalLibSort (Libs);
3 for 𝐿𝑖𝑏 in 𝐿𝑖𝑏𝑠 do
4 𝐿𝑖𝑏 ← TopologicalFuncSort(𝐿𝑖𝑏) ;
5 𝐺 = (𝑉 , 𝐸𝑑 , 𝐸𝑐 , ℓ𝑑 , ℓ𝑐) ←constructPDG(𝐿𝑖𝑏);
6 dumpPDG (𝐿𝑖𝑏,𝐺);
7 𝑆 ← ⊥;
8 for 𝐿𝑖𝑏 ∈ 𝐿𝑖𝑏𝑠 , 𝑓 ∈ 𝐿𝑖𝑏 do

9 𝑝𝑎𝑡ℎ𝑠 ← pathFrom(𝑉 𝑓
𝑠𝑟𝑐 ∪𝑉

𝑓
𝑎𝑟𝑔 ∪𝑉

𝑓

𝑜𝑢𝑡) ;
10 foreach 𝑝 : 𝑢1 ↩→ · · · ↩→ 𝑢𝑛 ∈ 𝑝𝑎𝑡ℎ𝑠
11 if 𝑢𝑛 ∈ 𝑉𝑖𝑛 then

12 𝑢′𝑛 ← getConnectedArg(𝑢𝑛) ;
13 if 𝑆 (𝑢′𝑛, ·) ≠ ∅ then
14 𝑆 (𝑢1,𝑢𝑛) ← 𝑆 (𝑢1,𝑢𝑛) ∪ {𝑝 };
15 if 𝑢1 ∈ 𝑉𝑜𝑢𝑡 then

16 𝑢′1 ← getConnectedRet(𝑢𝑛) ;
17 if 𝑆 (·,𝑢′1) ≠ ∅ then
18 𝑆 (𝑢1,𝑢𝑛) ← 𝑆 (𝑢1,𝑢𝑛) ∪ {𝑝 };
19 dumpBugSmry (𝜎𝑠𝑟𝑐 , 𝜎𝑠𝑖𝑛𝑘 , 𝑆);

and store the data-flow paths with specific start and end points.
Although the branches in a single function can introduce multiple
paths, we do not suffer from the path explosion problem. The key
reason is that we first create disjunctions of intraprocedural path
conditions and then concatenate them as the condition of an in-
terprocedural path. Our evaluation will also demonstrate the low
memory overhead of our two-layer design.

4.2.2 Persisting TPL Summaries. To persist the two-layer summary
for a given TPL, we need to construct the PDG for the TPL first
and then collect the bug-type-specific summary. Besides, we notice
that a TPL may depend on other TPLs, i.e., its function may invoke
other TPL functions. Following many static analyses in generating
function summaries, we utilize the dependency relation among the
TPLs and process them bottom-up. The two-layer summary of a
TPL is generated once all the dependent TPLs are processed.

Algorithm 1 shows the details of persisting two-layer summaries
for TPLs of an application. Initially, it takes as input a TPL list and
a bug specification. We sort all the TPLs in the list according to
their dependency relation (Line 2). We sort each TPL’s functions
based on the callee-caller relationship (Line 4). Following existing
techniques of program dependence analysis [51], we can generate
the PDG of each TPL (Line 5) and further store the PDG into the
disk for persistence (Line 6). Then we process each TPL according
to the sorting order and identify bug-type-specific summaries by
examining data-flow paths in each function (Lines 8–18). For the
data-flow path 𝑝 ending at an input node, we examine the connected
argument node 𝑢′𝑛 (Lines 11–12), which is located in the PDG of
the TPL that Lib relies on. If the argument node is the start point
of a summarized path, we persist the path 𝑝 (Line 13–14) as an
interprocedural data-flow path that can be formed by stitching 𝑝
with the summarized path. We process the case where 𝑢1 ∈ 𝑉𝑜𝑢𝑡 in
a similar way (Line 15–18).

Intuitively, Algorithm 1 generalizes existing bottom-up inter-
procedural analysis [40, 55] to the function summary generation.
The invoked TPL functions are processed before the ones invoking
them. Notably, we only store the data-flow paths of a caller that
may form an interprocedural data-flow path by concatenating them

Algorithm 2: Recovering path conditions
1 Procedure getPathCond(𝐺 = (𝑉 , 𝐸𝑑 , 𝐸𝑐 , ℓ𝑑 , ℓ𝑐), 𝑝):
2 𝜑 ← 𝑡𝑟𝑢𝑒 ;𝜓 ← 𝑡𝑟𝑢𝑒 ;
3 foreach 𝑣𝑖 in 𝑝 do

4 𝜑 ← 𝜑 ∧ getDataDepCond(𝑣𝑖 , 𝐸𝑑) ;
5 𝜓 ← 𝜓 ∧ getCtrlDepCond(𝑣𝑖 , 𝐸𝑑 , 𝐸𝑐) ;
6 return 𝜑 ∧𝜓
7 Procedure getDataDepCond(𝑣𝑖 , 𝐸𝑑):
8 𝜑 ← expr(𝑣𝑖) ;
9 foreach 𝑣𝑗 ↩→ 𝑣𝑖 ∈ 𝐸𝑑 do

10 𝜑 ← 𝜑 ∧ getDataDepCond(𝑣𝑗 , 𝐸𝑑) ;
11 return 𝜑

12 Procedure getCtrlDepCond(𝑣𝑖 , 𝐸𝑑 , 𝐸𝑐):
13 𝜑 ← 𝑡𝑟𝑢𝑒 ;𝜓 ← 𝑓 𝑎𝑙𝑠𝑒 ;
14 foreach 𝑣𝑗 ⇀ 𝑣𝑖 ∈ 𝐸𝑐 do

15 𝜓𝑡𝑚𝑝 ← getCtrlDepCond(𝑣𝑗 , 𝐸𝑑 , 𝐸𝑐) ;
16 𝜓 ← 𝜓 ∨ ((¬ℓ𝑐 (𝑣𝑗 ⇀ 𝑣𝑖) ⊕ expr(𝑣𝑗)) ∧𝜓𝑡𝑚𝑝) ;
17 𝜑 ← 𝜑 ∧ getDataDepCond(𝑣𝑗 , 𝐸𝑑) ;
18 return𝜓 ∧ 𝜑

with the paths of its callee. This effectively avoids collecting and
persisting any unnecessary bug-type-specific summaries.

4.3 Static Bug-Finding with Persistence

Based on two-layer persistent summaries, we can not only concate-
nate the summarized data-flow paths in the TPLs with the data-flow
paths in the application code but also recover the path conditions
from the PDGs of the TPLs. This section details the procedure of
recovering path conditions (§ 4.3.1) and statically finding bugs with
persistent summaries (§ 4.3.2).

4.3.1 Recovering Path Conditions. As shown in Definitions 3.1
and 3.2, a PDG provides the necessary ingredient to track each data-
dependence edge in the path and construct path conditions. Such
a process can be achieved by graph traversal formulated by Algo-
rithm 2. Basically, we take the conjunction of the data-dependence
condition and the control-dependence condition of each node in
the path 𝑝 (Lines 2–6). To construct the data-dependence condi-
tion of a node 𝑣𝑖 , we create a constraint based on the value def-
inition induced by 𝑣𝑖 (Line 8). Then we transitively collect the
data-dependence conditions of the parents of 𝑣𝑖 (Line 10), based
on which we take the conjunction as the data-dependence con-
dition of 𝑣𝑖 . To construct the control-dependence condition of 𝑣𝑖 ,
we transitively collect the control-dependence conditions of the
nodes that are control-dependent on 𝑣𝑖 (Line 15). We then create
the disjunction for case analysis (Line 16) and append the data-
dependence condition (Line 17) to form the control-dependence
condition of 𝑣𝑖 (Line 18). Because a PDG is loop-free, the functions
getDataDepCond and getCtrlDepCond must terminate upon the
PDG. Moreover, the path condition recovery can be achieved in lin-
ear time to the graph size for a given data-flow path, which permits
us to perform path-sensitive analysis efficiently.

Example 4.3. Consider the data-flow path 1○↩→ 6○↩→ 9○↩→ 14○
in Figure 2. By traversing the PDG along the data-dependence
edge, we can construct the data-dependence condition 0 = cRet9 =
cRet14 = cRet23. Similarly, we can construct the control-dependence
condition ¬(sz11 ≤ MAX) ∧ ¬(cRet14 ≠ 0) ∧ sz11 = sz8, where
sz11 = sz8 is induced by the data-dependence edge 4○↩→ 8○. Finally,
we can obtain the path condition by taking their conjunction.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Rongxin Wu, Yuxuan He, Jiafeng Huang, Chengpeng Wang, Wensheng Tang, Qingkai Shi, Xiao Xiao, and Charles Zhang

Algorithm 3: Bug-finding with persistent summary
1 Procedure findBug(𝑃 , 𝐿𝑖𝑏𝑠 , 𝜏 = (𝜎𝑠𝑟𝑐 , 𝜎𝑠𝑖𝑛𝑘 , true)):
2 persistSmry (𝐿𝑖𝑏𝑠 , 𝜎𝑠𝑟𝑐 , 𝜎𝑠𝑖𝑛𝑘);
3 𝐺 ←constructPDG(𝑃);
4 𝑉𝑠𝑟𝑐 ,𝑉𝑠𝑖𝑛𝑘 ← getSrcSink(𝐺,𝜎𝑠𝑟𝑐 , 𝜎𝑠𝑖𝑛𝑘) ;
5 foreach 𝑝 ∈ pathFrom(𝑉𝑠𝑟𝑐) do
6 search(𝑝,𝑉𝑠𝑖𝑛𝑘) ;
7 Procedure search(𝑝,𝑉𝑠𝑖𝑛𝑘):
8 𝑣1 ↩→ 𝑣2 ↩→ · · · ↩→ 𝑣𝑛 ← 𝑝 ;
9 if 𝑣𝑛 ∈ 𝑉𝑖𝑛 ∪𝑉𝑟𝑒𝑡 then

10 𝑣′𝑛 ← getConnectedArgOrOut(𝑣𝑛) ;
11 𝑃 ′ ← loadBugSmryAt(𝑣′𝑛) ;
12 foreach 𝑝′ ∈ 𝑃 ′ do
13 search(connect(𝑝, 𝑝′),𝑉𝑠𝑖𝑛𝑘) ;
14 if 𝑣𝑛 ∈ 𝑉𝑠𝑖𝑛𝑘 and L(𝑝) ∈ extended Dyck-CFL then

15 𝐺 ← loadPDG(𝑝) ;
16 if getPathCond(𝐺, 𝑝) = 𝑆𝐴𝑇 then

17 reportBug(𝑝);

4.3.2 Finding Bugs with Persistent Summaries. Leveraging path
condition recovery, we can reuse persistent TPL summaries in static
bug-finding. The key idea is to scan program paths from sources to
sinks and load previously computed persistent bug-type-specific
summaries on demand, which achieves full sensitivity with low
time and memory costs.

Without the loss of generality, we consider NPD-style bug de-
tection as an example to demonstrate bug-finding with persistent
summaries, where a bug occurs when a source reaches a sink via
a feasible path. We formulate the technical design in Algorithm 3.
It first prepares the summaries for all the TPLs and constructs the
PDG of an application 𝑃 (Line 2–3). After identifying sources and
sinks based on the bug specification (Line 4), it traverses from the
desired source and finds a path ending with the desired sinks (Line
5–6). During the path search, if the path encounters a call or re-
turn statement that requires the TPL summaries to connect the
data-flow path onwards, it loads the summaries persisted at this
statement (Lines 9-11) to continue the search (Line 13). Remarkably,
the function getConnectArgOrOut fetches the argument or output
𝑣 ′𝑛 according to the input or return 𝑣𝑛 , respectively, while the func-
tion loadBugSmryAt collects all the bug-type-specific summaries
starting from 𝑣 ′𝑛 . When the path finally reaches a sink, it validates
whether the label string of the path belongs to the extended Dyck-
CFL [53] (Line 14). If so, it loads the persisted PDG to recover the
path condition using Algorithm 2 and then decides the satisfiability
of the path condition with a solver (Line 15–16). For NPD detection,
a feasible data-flow path indicates a potential NPD (Line 17).

Notably, Algorithm 3 is general enough to support the detection
of other kinds of bugs, such as the ML in Example 3.4. By altering
the condition of reporting a bug (Line 16–17), we can easily extend
Algorithm 3 to detect the bugs caused by the sources that can not
reach any sink. As long as we generate the summaries for the TPLs,
we can delve into the TPL functions when analyzing the application
code with low overhead.

5 IMPLEMENTATION

We implemented LibAlchemy upon the state-of-the-art path-sensitive
bug-finding system Pinpoint [51]. Following Pinpoint, LibAlchemy
analyzes the program in LLVM IR after loop unrolling and invokes

Table 2: Statistics of subjects. #Lines𝐴, #LinesL, #Lines, and
#TPL are application sizes, TPL sizes, total sizes (KLoC), and

the numbers of transitively dependent TPLs, respectively.

ID Project Version #Lines𝐴 #LinesL #Lines #TPL

1 libxi 1.8 8 1,210 1,218 13
2 opusfile 0.12 9 1,141 1,150 10
3 libshout 2.4.5 28 2,163 2,191 14
4 hwloc 2.7.0 57 2,856 2,913 23
5 tmux 3.2 68 1,727 1,795 12
6 libsndfile 1.0.31 75 1,311 1,386 12
7 transmission 3.0 94 5,655 5,749 42
8 dynamips 0.2.14 104 3,118 3,222 10
9 libsdl 1.2 154 1,446 1,600 6
10 openldap 2.5.16 331 3,566 3,897 10
11 vim 8.1.2269 469 4,253 4,722 41
12 vlc 3.0.9 546 8,202 8,748 35
13 openssl 1.1.1 616 1,829 2,445 8
14 binutils 2.34 1,782 1,087 2,869 9
15 mariadb 10.3 2,469 8,750 11,219 48

Total 6,810 48,314 55,124

the SMT solver Z3 [56] to determine the satisfiability of a path condi-
tion. We provide more implementation details as follows, including
TPL preparation and checker instantiation.
TPL Preparation. To collect the TPLs of an application, we adopt
Ubuntu’s package manager dpkg [57] to obtain its dependencies.
Specifically, we transitively call dpkg for each dependent package
until all the dependencies are collected. After downloading the
source code using dpkg, we compile it into the LLVM IR for fur-
ther analysis. Though our implementation relies on the package
manager dpkg, our design for collecting TPLs is general. It can be
seamlessly extended to other library management platforms, such
as yum package manager [58] from RedHat OSes.
Checker Instantiation. We have implemented checkers to detect
four bug types: NPD, UAF, UUV, andML. As shown in Definition 3.5,
an NPD, UAF, and UUV are source-not-sink bug types, while an
ML is a source-must-sink bug type. We select these four checkers
because they can lead to severe memory errors, and developers
typically give feedback promptly on them. We provide the bug
specifications of the four bug types in configuration files, which
LibAlchemy further parsed to generate bug-type-specific sum-
maries in the bug detection. The four instantiations demonstrate
the generality of our design in detecting value-flow bugs.

6 EVALUATION

In this section, we evaluate the effectiveness and scalability of
LibAlchemy by answering the following research questions:
• RQ1: How effectively is LibAlchemy detecting security bugs
caused by TPL function misuse?
• RQ2: How scalable is LibAlchemy when reusing the persistent
TPL summaries?
• RQ3: How much time and space overhead does LibAlchemy
incur when persisting TPL summaries?

6.1 Experimental Setup

Subject Collection. We selected 15 widely-used and well-known
C/C++ open-source projects to evaluate LibAlchemy as shown
in Table 2, where their source code and the source code of their
dependent TPLs are all available in the Ubuntu sources. The selected
projects have at least 100 stars, update frequently, and use TPLs as

LibAlchemy: A Two-Layer Persistent Summary Design for Taming Third-Party Libraries in Static Bug-Finding Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Bug detection capability comparison. #Bug𝑇𝑃𝐿 rep-

resents the numbers of NPD, UAF, UUV, and ML bugs that

are related to TPLs and detected by LibAlchemy. #F/#C/#T

represents the numbers of fixed, confirmed, and reported

bugs respectively. The mark “✓” indicates a baseline has the

same detection capability as LibAlchemy within time and

memory budget, while the mark “×” indicates the opposite.
ID

LibAlchemy

LibFree LibWP LibCon LibPDG

#Bug𝑇𝑃𝐿 #F/#C/#T

1 (2, 0, 0, 0) 1/1/2 × ✓ ✓ ✓
2 (2, 0, 0, 0) 1/1/2 × ✓ ✓ ✓
3 (2, 0, 0, 0) 1/2/2 × × ✓ ✓
4 (5, 0, 0, 0) 0/5/5 × × ✓ ✓
5 (2, 0, 0, 0) 1/1/2 × × × ✓
6 (3, 0, 0, 0) 0/3/3 × ✓ × ✓
7 (1, 0, 0, 0) 0/0/1 × × × ✓
8 (0, 0, 2, 0) 0/2/2 × × ✓ ✓
9 (0, 1, 0, 0) 1/1/1 × × × ✓
10 (6, 0, 0, 0) 6/6/6 × × ✓ ✓
11 (1, 0, 0, 0) 1/1/1 × × × ✓
12 (2, 0, 0, 0) 0/1/2 × × ✓ ✓
13 (21, 0, 0, 0) 21/21/21 × × ✓ ✓
14 (0, 0, 0, 7) 7/7/7 × × × ✓
15 (4, 0, 0, 0) 1/3/4 × × × ×
Total (51, 1, 2, 7) 41/55/61

their dependencies. The sizes of these projects themselves range
from 8 KLoC to 2,469 KLoC. Since each project often depends on or
transitively depends on many TPLs (6∼48 TPLs for each project),
the code sizes of their TPLs are significantly larger than the projects
themselves, with a range from 1,087 KLoC to 8,750 KLoC. To set
up the environment, we generate summaries for all TPLs into the
database using LibAlchemy by offline analysis.
Baselines. We implement four settings based on the state-of-the-art
static bug-finding tool Pinpoint [51] as the baselines:
• LibFree: Apply Pinpoint under the setting of neglecting the
potential effects of TPLs.
• LibWP: Apply Pinpoint to analyze both the application and its
TPLs (i.e., whole-program analysis).
• LibCon: Apply Pinpoint by using the path constraints of the
bug-type-specific data-flow paths as the summaries, following
conventional path-sensitive precise summaries [48].
• LibPDG: Apply Pinpoint by using only the PDGs as the sum-
maries. It should be noted that, the way of loading PDGs is same
as LibAlchemy which is on-demand. We use this setting to eval-
uate the effects of the bug-type-specific summaries.

Environment. All experiments were run on an Ubuntu 20.04 server
with an Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz 40-core pro-
cessor and 512G of memory.

6.2 RQ1: Effectiveness of Bug Detection

To reduce the subjectivity of evaluation, we follow the practice of
the existing work [51] and set a high bar for “true positive”: bugs
confirmed by the developers of the evaluated subjects.

As shown in Table 3, LibAlchemy detected 61 new bugs related
to TPLs. Note that LibAlchemy also discovers 218 bugs that are
irrelevant to TPLs. Since these bugs are not the focus of this work
and can be detected by other baselines, we do not discuss them in

the following. We submitted all of 61 TPL-related bugs to develop-
ers for confirmation. It is shown that NPDs are the most common
vulnerabilities (51), while the other three bug checkers report fewer
bugs (1+2+7). Upon the submission, 55 of 61 bugs have been con-
firmed as true bugs [59], yielding a precision of 90.16% (55/61),
while 41 of them have already been fixed. The other six bugs are
false positives, including one pending review and five denied by the
developers. Notably, some confirmed bugs are from high-quality
systems such asMariaDB, vim, openssl, and binutils which have
been constantly scanned by Coverity [60]. Meanwhile, eleven of
the confirmed bugs are assigned with CVE IDs for their high impact
on software security [59]. For example, we detected aMariaDB bug
that is hidden for over eight years. This bug is serious enough to
deserve its CVE ID: CVE-2022-47015.

Table 3 also demonstrates the bug detection capability of other
baselines. LibFree neglects the side effects of TPLs, and thus cannot
detect any TPL-related bugs. LibWP, LibCon, and LibPDG consider
the presence of TPLs, and thus theoretically have the same bug
detection capability as LibAlchemy. However, due to the scalability
issues (i.e., running out of time or memory budgets as shown in
Table 4), LibWP, LibCon, and LibPDG fail to analyze twelve, seven,
and one projects, thus missing the bugs for these projects. These
results demonstrate the superiority of LibAlchemy.

We also conduct a deep analysis on the five bug reports that the
developers deny and summarize two reasons for the denial. First,
three bug reports are denied because the triggering conditions of
the bugs rarely happen in practice [61–63]. A typical example is that
some TPL APIs return a null value only when the system runs out
of memory (e.g., [62]). Second, the remaining denied bug reports
are technically false positives due to the inherited limitations of
the foundation framework [51], such as imprecise pointer analysis
in containers, loop unrolling, etc.

6.3 RQ2: Scalability of Reusing Summaries

To measure the scalability, we compare the time and memory usage
of LibAlchemy with LibWP, LibCon, LibPDG, and LibFree, re-
spectively. The timeout is set to 12 hours, the typical nightly-build
duration. The memory budget is set to 512GB, the same as our
server’s memory. The time speedup is calculated using the base-
lines’ analysis time divided by those of LibAlchemy. The memory
reduction is calculated by using the difference between the mem-
ory usage of the baseline and LibAlchemy divided by the memory
usage of the baselines. If the analysis encounters OOT or OOM, we
conservatively set them to 12 hours and 512GB, respectively.

As shown in Table 4, LibAlchemy outperforms two soundness-
equivalent baselines, LibWP and LibCon, achieving a time speedup
of 18.56× and 12.77× on average, respectively. This is because our
two-layer summary design enables efficient path condition recovery.
Notably, LibAlchemy achieves a 5.17× speedup over LibPDG, an-
other soundness-equivalent baseline. This is because LibAlchemy
eliminates infeasible paths and preserves all feasible paths when
analyzing TPL code. This saves the time of searching paths for
analysis of application with the acceptable cost of space overhead
for persisting the second-layer summaries.

LibAlchemy saves 91.49% and 90.51% of memory usage com-
paredwith LibWP and LibCon, respectively. This is because LibCon

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Rongxin Wu, Yuxuan He, Jiafeng Huang, Chengpeng Wang, Wensheng Tang, Qingkai Shi, Xiao Xiao, and Charles Zhang

Table 4: Performance comparison. TS and MR represent the time speedup and memory reduction of LibAlchemy over the

baselines. MR2 represents the memory reduction of the baseline LibFree over LibAlchemy. OOT and OOM indicate the

analysis runs out of time or memory, respectively. Avg represents the geometric average.

ID

LibAlchemy LibWP LibCon LibPDG LibFree

Time Mem Time TS Mem MR Time TS Mem MR Time TS Mem MR Time TS Mem MR2

1 3m 10.28G 11.12h 222.40 167.97G 93.88% 2.48h 49.60 152.34G 93.25% 2.26h 45.20 11.86G 13.32% 1m 0.33 3.18G 69.07%
2 9m 11.35G 7.73h 51.53 125.59G 90.96% 2.78h 18.53 95.69G 88.14% 2.90h 19.33 12.31G 7.80% 7m 0.78 4.50G 60.35%
3 11m 17.76G OOT 65.45 268.71G 93.39% 5.31h 28.96 400.66G 95.57% 4.12h 22.47 18.99G 6.48% 7m 0.64 7.68G 56.76%
4 23m 22.06G OOT 31.30 489.89G 95.50% 9.15h 23.87 479.90G 95.40% 1.71h 4.46 23.35G 5.52% 18m 0.78 7.28G 67.00%
5 48m 29.53G OOT 15.00 253.15G 88.33% OOT 15.00 OOM 94.23% 1.45h 1.81 30.04G 1.70% 38m 0.79 8.33G 71.79%
6 6m 12.50G 10.00h 100.00 291.64G 95.71% OOT 120.00 OOM 97.56% 2.27h 22.70 13.41G 6.79% 5m 0.83 3.78G 69.79%
7 1.17h 20.19G OOT 10.26 OOM 96.06% OOT 10.26 OOM 96.06% 6.19h 5.29 25.40G 20.51% 58m 0.83 16.83G 16.64%
8 38m 20.26G OOT 18.95 OOM 96.04% 11.61h 18.33 435.61G 93.35% 2.58h 4.07 24.37G 16.86% 34m 0.89 6.48G 68.02%
9 34m 14.37G OOT 21.18 270.81G 94.69% OOT 21.18 OOM 97.19% 1.81h 3.19 15.68G 8.35% 13m 0.38 4.19G 70.84%
10 41m 21.67G OOT 17.56 OOM 95.77% 10.55h 15.44 306.87G 92.94% 1.51h 2.21 24.20G 10.45% 29m 0.71 8.63G 60.18%
11 5.85h 147.27G OOT 2.05 460.85G 68.04% OOT 2.05 OOM 71.24% 8.01h 1.37 153.97G 4.35% 25m 0.07 25.70G 82.55%
12 25m 21.78G OOT 28.80 OOM 95.75% 4.85h 11.64 130.29G 83.23% 3.65h 8.76 23.20G 6.12% 27m 1.08 6.35G 70.84%
13 53m 28.45G OOT 13.58 375.72G 92.43% 3.93h 4.45 143.26G 80.14% 2.63h 2.98 31.61G 10.00% 52m 0.98 23.06G 18.95%
14 2.85h 26.42G OOT 4.21 389.13G 93.21% OOT 4.21 OOM 94.84% 5.86h 2.06 32.80G 19.45% 10.58h 3.71 18.31G 30.70%
15 9.67h 65.90G OOT 1.24 OOM 87.13% OOT 1.24 OOM 87.13% OOT 1.24 73.47G 10.30% OOT 1.24 45.64G 30.74%
Avg ≥18.56 ≥91.49% ≥12.77 ≥90.51% ≥5.17 8.37% ≥0.71 50.91%

Table 5: Time and space overhead of persisting summaries. Disk and Time stand for the disk space and time cost, respectively.

One Checker includes NPD. Two Checkers include NPD and UAF. Four Checkers include NPD, UAF, UUV, and ML.

ID

LibCon LibAlchemy

One Checker Two Checkers Four Checkers First-Layer One Checker Two Checkers Four Checkers

Disk Time Disk Time Disk Time Disk Time Disk Time Disk Time Disk Time

1 469.99G 17.75h 755.73G 31.95h 1434.25G 50.70h 17.52G 20m 0.87G 2m 1.33G 3m 2.85G 6m
2 458.46G 17.25h 736.38G 31.05h 1384.70G 48.70h 17.10G 18m 0.84G 2m 1.28G 3m 2.75G 6m
3 491.38G 19.32h 906.67G 34.77h 1630.98G 56.35h 22.49G 22m 0.96G 3m 1.63G 5m 3.39G 9m
4 670.49G 16.40h 1295.02G 36.27h 2401.76G 67.11h 30.02G 24m 1.66G 5m 3.13G 8m 5.96G 16m
5 488.20G 18.28h 794.58G 32.91h 1512.85G 52.49h 17.78G 21m 0.90G 3m 1.41G 7m 3.04G 10m
6 468.30G 17.25h 757.78G 31.05h 1430.34G 48.70h 17.84G 21m 0.87G 2m 1.33G 3m 2.84G 6m
7 646.78G 25.28h 1282.78G 45.51h 2423.58G 78.07h 27.34G 25m 1.59G 6m 3.17G 9m 6.30G 17m
8 485.97G 19.30h 890.07G 34.73h 1611.24G 56.23h 22.12G 23m 0.99G 3m 1.64G 5m 3.50G 10m
9 537.91G 18.43h 897.66G 33.18h 1732.51G 53.10h 21.32G 20m 0.91G 3m 1.49G 7m 3.25G 10m
10 477.26G 17.82h 765.31G 32.07h 1447.48G 50.66h 17.44G 21m 0.87G 2m 1.34G 3m 2.90G 6m
11 688.58G 23.98h 1271.71G 43.16h 2472.52G 72.41h 27.93G 26m 1.52G 5m 2.73G 9m 5.59G 17m
12 525.70G 18.60h 983.9G 33.48h 1950.94G 53.8h 22.69G 24m 1.01G 3m 1.67G 6m 3.64G 15m
13 457.15G 17.236h 733.36G 31.01h 1379.69G 48.66h 17.07G 18m 0.83G 2m 1.26G 3m 2.73G 9m
14 476.48G 17.85h 765.83G 32.13h 1450.35G 50.8h 17.39G 19m 0.87G 3m 1.34G 5m 2.89G 8m
15 645.18G 21.12h 1263.13G 38.02h 2395.30G 62.61h 30.48G 25m 1.93G 4m 3.04G 7m 5.59G 12m

introduces additional deserialization overhead due to parsing the
path conditions from the SMT-LIB2 format (the standard exporting
format for mainstream SMT solvers), which is time-consuming [64].
LibWP is generally not scalable as it can only successfully analyze
three of 15 projects within the given time and memory budget.
This is because exploring the data-flow paths among TPLs can eas-
ily lead to the path explosion problem. In contrast, LibAlchemy
consumes no more than 70GB of memory to finish the analysis of
the projectMariaDB, a database system with more than 10 MLoC
in terms of its application and dependent TPL. Compared with
LibPDG, LibAlchemy achieves a marginal improvement, i.e., 8.37%
of memory reduction. Although LibPDG requires searching more
candidate paths in TPLs, it discards infeasible paths and only pre-
serves feasible ones during searching.

LibFree does not consider the presence of TPLs, thus infeasible to
detect TPL-related bugs. Thus, it is not surprising that it is the most
efficient (1/0.71=1.29× speedup over LibAlchemy) and consumes
the least memory (50.91% of memory reduction over LibAlchemy)
among all the settings. However, there are still three exceptions
when analyzing the project vlc, binutils, andMariaDB. For example,
the speedup of LibAlchemy over LibFree is 3.71× when analyzing

binutils. By runtime profiling, we notice that LibFree will waste
time exploring many infeasible program without exploring the path
conditions from library functions paths.

6.4 RQ3: Overhead of Persisting Summaries

To evaluate the time and space overhead of persisting summaries,
we compared our summary design (i.e., LibAlchemy) with the con-
ventional path-sensitive precise summary (i.e., LibCon). Specifically,
to understand the effects of compact encoding in our first-layer
summary, we measure how the time and space cost of persisting
summaries vary with the increasing number of bug-checkers.

Table 5 shows the comparison results. Taking one bug checker
for example, LibAlchemy persists two-layer summaries, taking up
17.90GB to 32.41GB of disk space, while LibCon persists single-
layer summaries, taking up 457.15GB to 688.58GB of disk space. The
space reduction of LibAlchemy over LibCon is around 94.98% to
96.18%. The time overhead reduction of LibAlchemy over LibCon
is around 97.05% to 98.07%. This result indicates that our two-layer
summary design significantly reduces the time and space overhead
compared with conventional path-sensitive summary design.

Moreover, with an increasing number of bug checkers, the space
and time overhead reductions of LibAlchemy over LibCon are

LibAlchemy: A Two-Layer Persistent Summary Design for Taming Third-Party Libraries in Static Bug-Finding Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

much more significant. Taking four bug checkers as examples,
LibCon takes up 1,379.69GB to 2,472.52GB of disk space, while
LibAlchemy only takes up 19.80GB to 36.07GB of disk space. The
space overhead reduction of LibAlchemy over LibCon is around
98.41% to 98.65%, which is much higher than when checking only
one bug. Thus, the effects of compact encoding by our first-layer
summary would be significantly amplified with the increasing num-
ber of bug checkers.

7 RELATEDWORK

Program Dependence Graph. Approaches to constructing pro-
gram dependence graphs (PDGs) have evolved rapidly in recent
decades. Initially, PDG only represented a program’s data and
control-dependence within a single function [65]. As an extension,
system dependence graph (SDG) introduces the call and return
edges to bridge the dependence across procedures in a system [66–
68]. Recently, code property graphs have been proposed to combine
semantics and structural representation of the program for de-
tecting various bugs [69, 70]. However, these approaches cannot
represent a precise program dependence due to their weak assump-
tions on alias relations. To address this problem, many existing
approaches adopted a “staged design”, invoking a flow-sensitive
pointer analysis algorithm to obtain a precise PDG before doing
client analyses [71, 72]. However, existing studies show the stage
design introduces scalability issues and prevents a PDG with higher
precision from being constructed [51, 73]. Recently, a PDG equipped
with a “holistic design” achieves path-sensitive precision in a scal-
able way [51]. Similarly, our work is built on such a state-of-the-art
PDG representation, to facilitate scalable and precise bug detection.

Function Summaries. Existing studies on function summaries can
be grouped into three categories. The first category is designed for
caching the analysis results in the compositional analysis under the
context of the same run of analysis [24, 31, 33, 40–42]. For exam-
ple, the IFDS [40] and IDE frameworks [33] compute the low-level
function summaries, which can be understood as adding a rapid
edge from the function entry to the function exit and uses them to
accelerate the reachability analysis in the same running process.
However, such summaries can only be used if a function is called
multiple times in the same analysis, and there is not any easy way
to persist them and use them independently for different analyses.
The second category is designed for incremental analysis [43–47].
Such summaries essentially need to capture the dependency among
the analysis units so that only those impacted by the changes are
reanalyzed. For example, Do et al. [46] built their incremental anal-
ysis on top of the IFDS framework, and used the layers of data-flow
propagation along calling relations as the function summaries to
prioritize the reanalysis task. Although such summaries can be used
in different runs of analysis, they are limited in reusing results from
the previous run of analysis on the same programmodule. The third
category can be used for reusing analysis results in different runs
and across different modules [16, 34, 35, 48, 49]. Stubdroid [16] uses
component-level analysis to generate function summary based on
FlowDroid [74], a flow-sensitive work for taint analysis. However,
they are not path-sensitive and, thus, fall short of precision. To
achieve the precision of path sensitivity, some studies use path

constraints as function summaries [48, 49], but our experiments
have shown such approaches to be costly.

Disk-based Static Analysis System. The techniques used by
disk-based static analysis systems generally fall into three cate-
gories. The first category stores the control-flow graph (CFG) onto
graph databases and describes the client analysis in a CFG in graph
queries [75, 76]. Particularly, Weiss et al. [75] built the incorrect
error propagation rules as graph patterns and sped up their queries
via graph indexing techniques. The second category adapts existing
static analysis algorithms into graph systems such that existing
algorithms can directly benefit from the scalability improvement
from these systems [77–79]. However, both existing graph databases
and graph systems do not persist a PDG and lack the capability of
handling path sensitivity, preventing the higher requirement of a
practical bug detection solution. The third category stores the trans-
formation rules that summarize the taint-related flows and uses
them to detect the taint-style bugs in a flow-sensitive manner. Our
work also follows the summary-based approach but integrates PDG
and data-flow paths as summaries to achieve both path sensitivity
and high scalability.

8 CONCLUSION

We presented a two-layer summary design that enables the static
bug finder to detect bugs caused by the misuse of TPL functions in
an effective, scalable, and precise manner. We implemented our idea
as a tool named LibAlchemy and evaluated it systematically. The
evaluation results show that LibAlchemy is a promising industrial-
strength static bug-finding system.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.
RongxinWu is supported by the Leading-edge Technology Program
of Jiangsu Natural Science Foundation (BK20202001), Natural Sci-
ence Foundation of China (62272400), and the grant from Huawei.
Charles Zhang is supported by ITS/440/18FP grant from the Innova-
tion and Technology Commission and the donations fromMicrosoft
and Huawei. Chengpeng Wang is the corresponding author.

REFERENCES

[1] The Open Web Application Security Project. OWASP Top 10. https://owasp.o
rg/www-pdf-archive/OWASP_Top_10_-_2013.pdf, 2013. [Online; accessed Jul-
2023].

[2] The Open Web Application Security Project. OWASP Top 10. https://owasp.or
g/www-project-top-ten/2017/Top_10, 2017. [Online; accessed Jul-2023].

[3] The Open Web Application Security Project. OWASP Top 10. https://owasp.or
g/Top10/, 2021. [Online; accessed 10-Jan-2022].

[4] Synopsys Inc. Black Duck Software Composition Analysis. https://www.blackdu
cksoftware.com/, 2022. [Online; accessed 7-Dec-2022].

[5] Micro Focus Inc. HP Fortify Software Composition Analysis. https://www.micro
focus.com/en-us/cyberres/application-security/software-composition-analysis,
2022. [Online; accessed 7-Dec-2022].

[6] Snyk Limited. Snyk Software Composition Analysis. https://snyk.io/series/ope
n-source-security/software-composition-analysis-sca/, 2022. [Online; accessed
7-Dec-2022].

[7] SeunghoonWoo, Sunghan Park, Seulbae Kim, Heejo Lee, and Hakjoo Oh. Centris:
A precise and scalable approach for identifying modified open-source software
reuse. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 860–872. IEEE, 2021. https://doi.org/10.1109/ICSE43902.2021.00083.

[8] Seunghoon Woo, Hyunji Hong, Eunjin Choi, and Heejo Lee. Movery:
A precise approach for modified vulnerable code clone discovery
from modified open-source software components. In 31st USENIX

https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-top-ten/2017/Top_10
https://owasp.org/www-project-top-ten/2017/Top_10
https://owasp.org/Top10/
https://owasp.org/Top10/
https://www.blackducksoftware.com/
https://www.blackducksoftware.com/
https://www.microfocus.com/en-us/cyberres/application-security/software-composition-analysis
https://www.microfocus.com/en-us/cyberres/application-security/software-composition-analysis
https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://doi.org/10.1109/ICSE43902.2021.00083

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Rongxin Wu, Yuxuan He, Jiafeng Huang, Chengpeng Wang, Wensheng Tang, Qingkai Shi, Xiao Xiao, and Charles Zhang

Security Symposium (USENIX Security 22), pages 3037–3053, 2022.
https://www.usenix.org/conference/usenixsecurity22/presentation/woo.

[9] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng
Li, Binghong Liu, Yang Liu, Wei Huo, Wei Zou, et al. Mvp: Detect-
ing vulnerabilities using patch-enhanced vulnerability signatures. In 29th
USENIX Security Symposium (USENIX Security 20), pages 1165–1182, 2020.
https://www.usenix.org/conference/usenixsecurity20/presentation/xiao.

[10] Xian Zhan, Lingling Fan, Sen Chen, Feng We, Tianming Liu, Xiapu Luo, and
Yang Liu. Atvhunter: Reliable version detection of third-party libraries for
vulnerability identification in android applications. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 1695–1707. IEEE,
2021. https://doi.org/10.1109/ICSE43902.2021.00150.

[11] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. Vuddy: A scalable
approach for vulnerable code clone discovery. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 595–614. IEEE, 2017. https://doi.org/10.1109/SP.2017.62.

[12] GitHub. A potential bug of NPD in opusfile. https://github.com/xiph/opusfile/
issues/36, 2022. [Online; accessed Jul-2023].

[13] Ying Zhang, Md Mahir Asef Kabir, Ya Xiao, Danfeng Daphne Yao, and
Na Meng. Automatic detection of java cryptographic api misuses:
Are we there yet. IEEE Transactions on Software Engineering, 2022.
https://doi.org/10.1109/TSE.2022.3150302.

[14] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, andMira Mezini. A
systematic evaluation of static api-misuse detectors. IEEE Transactions on Software
Engineering, 45(12):1170–1188, 2018. https://doi.org/10.1109/TSE.2018.2827384.

[15] Peter Leo Gorski, Luigi Lo Iacono, Yasemin Acar, Sebastian Moeller, Chris-
tian Stransky, and Sascha Fahl. On the effect of security warnings on cryp-
tographic api misuse. In In 39th IEEE Symposium on Security and Privacy, 2018.
https://www.usenix.org/conference/soups2018/presentation/gorski.

[16] Steven Arzt and Eric Bodden. Stubdroid: Automatic inference of precise data-
flow summaries for the android framework. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE), pages 725–735. IEEE, 2016.
https://doi.org/10.1145/2884781.2884816.

[17] Nomair A Naeem and Ondřej Lhoták. Faster alias set analysis using summaries.
In International Conference on Compiler Construction, pages 82–103. Springer,
2011. https://doi.org/10.1007/978-3-642-19861-8_6.

[18] Haiyan Zhu, Thomas Dillig, and Isil Dillig. Automated inference of li-
brary specifications for source-sink property verification. In Asian Sympo-
sium on Programming Languages and Systems, pages 290–306. Springer, 2013.
https://doi.org/10.1007/978-3-319-03542-0_21.

[19] Osbert Bastani, Saswat Anand, and Alex Aiken. Specification inference using
context-free language reachability. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
553–566, 2015. https://doi.org/10.1145/2676726.2676977.

[20] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. Maximal specifica-
tion synthesis. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 789–801, 2016.
https://doi.org/10.1145/2914770.2837628.

[21] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp,
and Ryan Berg. F4f: taint analysis of framework-based web applications.
In Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications, pages 1053–1068, 2011.
https://doi.org/10.1145/2048066.2048145.

[22] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. Scalable and
precise taint analysis for android. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis, pages 106–117, 2015.
https://doi.org/10.1145/2771783.2771803.

[23] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. Droidra:
Taming reflection to support whole-program analysis of android apps. In Pro-
ceedings of the 25th International Symposium on Software Testing and Analysis,
pages 318–329, 2016. https://doi.org/10.1145/2931037.2931044.

[24] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: statically
vetting android apps for component hijacking vulnerabilities. In Proceedings
of the 2012 ACM conference on Computer and communications security, pages
229–240, 2012. https://doi.org/10.1145/2382196.2382223.

[25] IBM T.J. Watson Research Center. The T. J. Watson Libraries for Analysis (WALA).
https://github.com/wala/WALA, 2022. [Online; accessed Nov-2022].

[26] Steffen Lortz, Heiko Mantel, Artem Starostin, Timo Bähr, David Schneider, and
Alexandra Weber. Cassandra: Towards a certifying app store for android. In
Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones &
Mobile Devices, pages 93–104, 2014. https://doi.org/10.1145/2666620.2666631.

[27] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS), 32(2):1–29,
2014. https://doi.org/10.1145/2619091.

[28] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. Loss-
less, persisted summarization of static callgraph, points-to and data-flow
analysis. In 35th European Conference on Object-Oriented Programming

(ECOOP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2.

[29] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, and
Michael Pradel. Extracting taint specifications for javascript libraries. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering,
pages 198–209, 2020. https://doi.org/10.1145/3377811.3380390.

[30] Johannes Späth, Karim Ali, and Eric Bodden. Ide al: Efficient and precise alias-
aware dataflow analysis. Proceedings of the ACM on Programming Languages,
1(OOPSLA):1–27, 2017. https://doi.org/10.1145/3133923.

[31] Atanas Rountev and Barbara G Ryder. Points-to and side-effect analyses for
programs built with precompiled libraries. In International Conference on Compiler
Construction, pages 20–36. Springer, 2001. https://doi.org/10.1007/3-540-45306-
7_3.

[32] Atanas Rountev, Scott Kagan, and Thomas Marlowe. Interprocedural dataflow
analysis in the presence of large libraries. In International Conference on Compiler
Construction, pages 2–16. Springer, 2006. https://doi.org/10.1007/11688839_2.

[33] Atanas Rountev, Mariana Sharp, and Guoqing Xu. Ide dataflow analysis in
the presence of large object-oriented libraries. In International Conference on
Compiler Construction, pages 53–68. Springer, 2008. https://doi.org/10.1007/978-
3-540-78791-4_4.

[34] Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong
Mei. Summary-based context-sensitive data-dependence analysis in pres-
ence of callbacks. In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 83–95, 2015.
https://doi.org/10.1145/2676726.2676997.

[35] Hao Tang, Di Wang, Yingfei Xiong, Lingming Zhang, Xiaoyin Wang, and
Lu Zhang. Conditional dyck-cfl reachability analysis for complete and efficient
library summarization. In European Symposium on Programming, pages 880–908.
Springer, 2017. https://doi.org/10.1007/978-3-662-54434-1_33.

[36] John Toman and Dan Grossman. Taming the static analysis beast. In 2nd Summit
on Advances in Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017. https://doi.org/10.4230/LIPIcs.SNAPL.2017.18.

[37] Synopsys Inc. Coverity Scan. https://scan.coverity.com/, 2022. [Online; accessed
7-Dec-2022].

[38] Ankush Das, Shuvendu K Lahiri, Akash Lal, and Yi Li. Angelic verification:
Precise verification modulo unknowns. In International Conference on Computer
Aided Verification, pages 324–342. Springer, 2015. https://doi.org/10.1007/978-3-
319-21690-4_19.

[39] Sam Blackshear and Shuvendu K Lahiri. Almost-correct specifications: A mod-
ular semantic framework for assigning confidence to warnings. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 209–218, 2013. https://doi.org/10.1145/2491956.2462188.

[40] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 49–61, 1995.
https://doi.org/10.1145/199448.199462.

[41] Domagoj Babic and Alan J. Hu. Calysto: Scalable and precise extended static
checking. In Proceedings of the 30th International Conference on Software Engineer-
ing, ICSE ’08, pages 211–220. IEEE, 2008. https://doi.org/10.1145/1368088.1368118.

[42] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and com-
pact modular procedure summaries for heap manipulating programs. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’11, pages 567–577. ACM, 2011.
https://doi.org/10.1145/1993498.1993565.

[43] Steven Arzt and Eric Bodden. Reviser: efficiently updating ide-/ifds-based data-
flow analyses in response to incremental program changes. In Proceedings of
the 36th International Conference on Software Engineering, pages 288–298, 2014.
https://doi.org/10.1145/2568225.2568243.

[44] Scott McPeak, Charles-Henri Gros, and Murali Krishna Ramanathan. Scal-
able and incremental software bug detection. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pages 554–564, 2013.
https://doi.org/10.1145/2491411.2501854.

[45] Lori L Pollock and Mary Lou Soffa. An incremental version of iterative data
flow analysis. IEEE Transactions on Software Engineering, 15(12):1537–1549, 1989.
https://doi.org/10.1109/32.58766.

[46] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith,
and Emerson Murphy-Hill. Just-in-time static analysis. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
’17, pages 307–317. ACM, 2017. https://doi.org/10.1145/3092703.3092705.

[47] Rashmi Mudduluru and Murali Krishna Ramanathan. Efficient incremental
static analysis using path abstraction. In International Conference on Fun-
damental Approaches to Software Engineering, pages 125–139. Springer, 2014.
https://doi.org/10.1007/978-3-642-54804-8_9.

[48] Yichen Xie and Alex Aiken. Saturn: A scalable framework for error detection
using boolean satisfiability. ACM Transactions on Programming Languages and
Systems (TOPLAS), 29(3):16–es, 2007. https://doi.org/10.1145/1232420.1232423.

[49] Yichen Xie and Alex Aiken. Scalable error detection using boolean satis-
fiability. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on

https://www.usenix.org/conference/usenixsecurity22/presentation/woo
https://www.usenix.org/conference/usenixsecurity20/presentation/xiao
https://doi.org/10.1109/ICSE43902.2021.00150
https://doi.org/10.1109/SP.2017.62
https://github.com/xiph/opusfile/issues/36
https://github.com/xiph/opusfile/issues/36
https://doi.org/10.1109/TSE.2022.3150302
https://doi.org/10.1109/TSE.2018.2827384
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.1145/2884781.2884816
https://doi.org/10.1007/978-3-642-19861-8_6
https://doi.org/10.1007/978-3-319-03542-0_21
https://doi.org/10.1145/2676726.2676977
https://doi.org/10.1145/2914770.2837628
https://doi.org/10.1145/2048066.2048145
https://doi.org/10.1145/2771783.2771803
https://doi.org/10.1145/2931037.2931044
https://doi.org/10.1145/2382196.2382223
https://github.com/wala/WALA
https://doi.org/10.1145/2666620.2666631
https://doi.org/10.1145/2619091
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2
https://doi.org/10.1145/3377811.3380390
https://doi.org/10.1145/3133923
https://doi.org/10.1007/3-540-45306-7_3
https://doi.org/10.1007/3-540-45306-7_3
https://doi.org/10.1007/11688839_2
https://doi.org/10.1007/978-3-540-78791-4_4
https://doi.org/10.1007/978-3-540-78791-4_4
https://doi.org/10.1145/2676726.2676997
https://doi.org/10.1007/978-3-662-54434-1_33
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18
https://scan.coverity.com/
https://doi.org/10.1007/978-3-319-21690-4_19
https://doi.org/10.1007/978-3-319-21690-4_19
https://doi.org/10.1145/2491956.2462188
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/1368088.1368118
https://doi.org/10.1145/1993498.1993565
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1109/32.58766
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1007/978-3-642-54804-8_9
https://doi.org/10.1145/1232420.1232423

LibAlchemy: A Two-Layer Persistent Summary Design for Taming Third-Party Libraries in Static Bug-Finding Systems ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Principles of Programming Languages, POPL ’05, pages 351–363. ACM, 2005.
https://doi.org/10.1145/1040305.1040334.

[50] Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. Path-sensitive sparse
analysis without path conditions. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
pages 930–943, 2021. https://doi.org/10.1145/3453483.3454086.

[51] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles
Zhang. Pinpoint: Fast and precise sparse value flow analysis for mil-
lion lines of code. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 693–706, 2018.
https://doi.org/10.1145/3192366.3192418.

[52] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. Practical memory leak
detection using guarded value-flow analysis. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation, page
480–491, 2007. https://doi.org/10.1145/1250734.1250789.

[53] Qingkai Shi, Yongchao Wang, Peisen Yao, and Charles Zhang. Indexing the
extended dyck-cfl reachability for context-sensitive program analysis. Proc. ACM
Program. Lang., 6(OOPSLA2):1438–1468, 2022. https://doi.org/10.1145/3563339.

[54] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. Practical memory leak
detection using guarded value-flow analysis. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’07, pages 480–491. ACM, 2007. https://doi.org/10.1145/1250734.1250789.

[55] Qingkai Shi and Charles Zhang. Pipelining bottom-up data flow analysis. In Gregg
Rothermel and Doo-Hwan Bae, editors, ICSE ’20: 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, pages 835–847.
ACM, 2020. https://doi.org/10.1145/3377811.3380425.

[56] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Pro-
ceedings of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS ’08, pages 337–340. Springer, 2008.
https://doi.org/10.1007/978-3-540-78800-3_24.

[57] Linux manual page. dpkg(1). https://man7.org/linux/man-pages/man1/dpkg.1.
html, 2022. [Online; accessed 12-Dec-2022].

[58] Yum. Yum v3.4.3 documentation. http://yum.baseurl.org/api/yum/, 2022. [Online;
accessed 12-Dec-2022].

[59] All bug reports by libAlchemy. https://github.com/ash1852/fusion-scan.github
.io?tab=readme-ov-file, 2022.

[60] Synopsys. Coverity Scan. https://scan.coverity.com/projects, 2022. [Online;
accessed Jul-2023].

[61] Bug report denied by libXi. https://gitlab.freedesktop.org/xorg/lib/libxi/-
/issues/14, 2022.

[62] Bug report denied by transmisson. https://github.com/transmission/transmissio
n/issues/3706, 2022.

[63] Bug report denied by MariaDB. https://jira.mariadb.org/browse/MDEV-29891?
filter=-2.

[64] David R Cok et al. The smt-libv2 language and tools: A tutorial. Language c,
pages 2010–2011, 2011. https://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf.

[65] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 9(3):319–349, 1987. https://doi.org/10.1145/24039.24041.

[66] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(1):26–60, 1990. https://doi.org/10.1145/77606.77608.

[67] Neil Walkinshaw, Marc Roper, and Murray Wood. The java sys-
tem dependence graph. In Proceedings Third IEEE International Work-
shop on Source Code Analysis and Manipulation, pages 55–64. IEEE, 2003.
https://doi.org/10.1109/SCAM.2003.1238031.

[68] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. System-dependence-
graph-based slicing of programs with arbitrary interprocedural control flow. In
Proceedings of the 21st International Conference on Software Engineering, pages
432–441, 1999. https://doi.org/10.1145/302405.302675.

[69] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and dis-
covering vulnerabilities with code property graphs. In 2014 IEEE Symposium on Se-
curity and Privacy, pages 590–604. IEEE, 2014. https://doi.org/10.1109/SP.2014.44.

[70] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. Au-
tomatic inference of search patterns for taint-style vulnerabilities. In
2015 IEEE Symposium on Security and Privacy, pages 797–812. IEEE, 2015.
https://doi.org/10.1109/SP.2015.54.

[71] Yulei Sui and Jingling Xue. Svf: Interprocedural static value-flow analysis in llvm.
In Proceedings of the 25th International Conference on Compiler Construction, CC
’16, pages 265–266. ACM, 2016. https://doi.org/10.1145/2892208.2892235.

[72] Lian Li, Cristina Cifuentes, and Nathan Keynes. Precise and scalable context-
sensitive pointer analysis via value flow graph. ACM SIGPLAN Notices, 48(11):85–
96, 2013. https://doi.org/10.1145/2555670.2466483.

[73] Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection us-
ing full-sparse value-flow analysis. In Proceedings of the 2012 Interna-
tional Symposium on Software Testing and Analysis, pages 254–264, 2012.
https://doi.org/10.1145/2338965.2336784.

[74] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.
https://doi.org/10.1145/2666356.2594299.

[75] Cathrin Weiss, Cindy Rubio-González, and Ben Liblit. Database-backed program
analysis for scalable error propagation. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, volume 1, pages 586–597. IEEE, 2015.
https://doi.org/10.1109/ICSE.2015.75.

[76] Dániel Lukács, Gergely Pongrácz, and Máté Tejfel. Are graph databases fast
enough for static p4 code analysis? In ICAI, pages 213–223, 2020. https://ceur-
ws.org/Vol-2650/paper22.pdf.

[77] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani.
Graspan: A single-machine disk-based graph system for interprocedural static
analyses of large-scale systems code. ACM SIGARCH Computer Architecture News,
45(1):389–404, 2017. https://doi.org/10.1145/3093337.3037744.

[78] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang,
Guoqing Harry Xu, Linzhang Wang, and Xuandong Li. Grapple: A graph
system for static finite-state property checking of large-scale systems code.
In Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–17, 2019.
https://doi.org/10.1145/3302424.3303972.

[79] Zhiqiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Yue Li, Linzhang
Wang, Xuandong Li, and Guoqing Harry Xu. Chianina: an evolving
graph system for flow-and context-sensitive analyses of million lines of c
code. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, pages 914–929, 2021.
https://doi.org/10.1145/3453483.3454085.

https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/3453483.3454086
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/3563339
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/3377811.3380425
https://doi.org/10.1007/978-3-540-78800-3_24
https://man7.org/linux/man-pages/man1/dpkg.1.html
https://man7.org/linux/man-pages/man1/dpkg.1.html
http://yum.baseurl.org/api/yum/
https://github.com/ash1852/fusion-scan.github.io?tab=readme-ov-file
https://github.com/ash1852/fusion-scan.github.io?tab=readme-ov-file
https://scan.coverity.com/projects
https://gitlab.freedesktop.org/xorg/lib/libxi/-/issues/14
https://gitlab.freedesktop.org/xorg/lib/libxi/-/issues/14
https://github.com/transmission/transmission/issues/3706
https://github.com/transmission/transmission/issues/3706
https://jira.mariadb.org/browse/MDEV-29891?filter=-2
https://jira.mariadb.org/browse/MDEV-29891?filter=-2
https://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/77606.77608
https://doi.org/10.1109/SCAM.2003.1238031
https://doi.org/10.1145/302405.302675
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2015.54
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/2555670.2466483
https://doi.org/10.1145/2338965.2336784
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1109/ICSE.2015.75
https://ceur-ws.org/Vol-2650/paper22.pdf
https://ceur-ws.org/Vol-2650/paper22.pdf
https://doi.org/10.1145/3093337.3037744
https://doi.org/10.1145/3302424.3303972
https://doi.org/10.1145/3453483.3454085

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Program Dependence Graph
	3.2 Feasible Data-Flow Path
	3.3 Static Bug-Finding

	4 LibAlchemy System Design
	4.1 Bug-Type-Specific Summary
	4.2 TPL Summary Persistence
	4.3 Static Bug-Finding with Persistence

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1: Effectiveness of Bug Detection
	6.3 RQ2: Scalability of Reusing Summaries
	6.4 RQ3: Overhead of Persisting Summaries

	7 Related Work
	8 Conclusion
	References

