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FinTech Systems

• Offer financial services to consumers or businesses
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• Mobile Payment Apps
• Peer-to-Peer Lending
• Personal Finance Apps

• Important to validate the correctness of financial data



Data Constraints in FinTech Systems

• A predicate over table attributes
• Operation: numeric comparison/computation, substring matching
• Control flow: sequencing, branch
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• The amount is great than 0
• Two accounts are not null

• Examined upon huge relational tables per minute/hour

debug

load check

update
data



Equivalent Data Constraints

• Existence of equivalent data constraints
• Over 20% of data constraints are equivalent to others in Ant Group

• Root cause
• Unaware of existing data constraints

• Consequence
• Waste computation resources
• Redundant error messages
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Resolving Equivalent Data Constraints

New DC

Equivalent Variants

Search Bot

DeveloperDC Repository

Cluster Bot Clusters Quality Assurance
Manager

Merge Suggestions

Equivalence
Searching

Equivalence
Clustering

Merge or commit
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• Equivalence searching/clustering



Data Constraint Equivalence Verification

• Problem
• Given two data constraints r1 and r2, determine whether r1 is 

semantically equivalent to r2.

!"

#!"
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• Challenge
• Achieve high efficiency, soundness, and completeness simultaneously

• Tens of thousands of data constraints can amplify the efficiency bottleneck.
• An unsound decision procedure would result in financial loss.
• An incomplete decision procedure would hide opportunities for optimization.



Existing Effort

• Term rewriting identifies equivalent variants
• Ensure soundness
• Discover restrictive forms of equivalent patterns
• Search vast space when applying rewrite rules

• SMT-based symbolic reasoning verifies logical equivalence
• Ensure soundness and completeness for decidable fragment
• SMT solver targets satisfiability problem instead of logical equivalence

checking
• Invoked thousands of times, degrading the efficiency
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Motivating Example
• Lexical differences in non-equivalent

data constraints
• Example: (a) and (c)
• Pose constrain over different table

attributes

• Isomorphic structures in equivalent
data constraints

• Example: (b) and (d)
• Only differ in the order of commutative

operands and assertions
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EqDAC: Key Idea
• Achieve an efficient decision procedure without “deep” semantic analysis

• (Over-approximation) Lexical difference-guided input generation refutes data
constraint equivalence

• (Under-approximation) The isomorphic structure proves data constraint equivalence
• Polynomial time!

𝑟! and r are semantically
equivalent

𝑟! and 𝑟 are divergent
under a given input

𝑟! and 𝑟 have isomorphic structures
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Workflow of EqDAC
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Divergence Analysis
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Enforce 𝝋𝟏 to be false Enforce 𝝋𝟐 to be true

[𝑡. 𝑜𝑖𝑑 → 0]

[𝑡. 𝑜𝑖𝑑 → 0,
𝑡. 𝑖𝑖𝑑 → 1,
𝑡. 𝑎𝑚𝑡 → 1,
𝑡. 𝑛𝑒𝑤 → 2]

false true

true

true

• Concretize data variables making two formulas evaluate differently,
which refutes the equivalence



Isomorphism Analysis
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• Apply tree isomorphism algorithm to prove equivalence



Theoretical Result
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• Theorem 1: Except for SMT solving, other steps of EqDAC run in polynomial time to N,
where N is the upper bound of the numbers of AST nodes for the two data constraints.

• Theorem 2: If the fragment of data constraints is decidable, EqDAC is sound and complete.



RQ1: Effectiveness

• Identify 26,789 equivalent pairs among 30,801 data constraints in Ant Group
• 7,842 data constraints can be removed.
• Error messages caused by data constraints in the same cluster can be merged

• Extreme case: 48 equivalent data constraints in a cluster

13



RQ2: Efficiency

• Equivalence clustering
• Analyze 30,801 data constraints in 2.89 h
• Peak memory: linear to #data constraints
• Time cost: Quadratic to #data constraints
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• Equivalence searching
• #Data constraint = 30,801 – 1,000
• Peak memory: 527.87 MB (max), 527.1 MB (avg)
• Time cost: 2.50 sec (max), 1.22 sec (avg)



RQ3: Ablation Studies
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• Equivalence clustering

• Equivalence searching

max: 2.50 sec, avg: 1.22 sec max: 6.56 sec, avg: 2.53 sec max: 1.48 sec, avg: 0.74 sec
EqDAC

Miss 37 equivalent
data constraints

EqDAC-NI EqDAC-NS

EqDAC-NI: no isomorphic analysis
EqDAC-NS: no SMT solving

EqDAC-ND: no divergence analysis



Conclusion
• Formulate the problem of equivalence data constraint verification

• Equivalence reasoning upon tens of thousands of programs, i.e., data constraints

• Propose an efficient, sound, and complete decision procedure
• Leverage lexical difference and isomorphic structures for acceleration

• Provide a fundamental component of equivalence searching and clustering
• Avoid the redundant checking of equivalent data constraints
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Thank you for your listening!
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Pre-print Tool



BACKUP
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Syntax

• Data constraint syntax
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Semantics

• An interpretation 𝐼 is a mapping which maps each data variable 
𝑣% to a value in its domain.

• Given a data constraint 𝑟, we say 𝐼 ⊨ 𝑟, i.e., 𝐼 is a model of 𝑟, if 
and only if all the assertions in 𝑟 hold under the interpretation 𝐼.
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Data Constraint Equivalence

• The data constraints 𝑟& and 𝑟' are semantically equivalent, denoted 
by 𝑟& ≃ 𝑟', if and only if for any interpretation I, we have

𝐼 ⊨ 𝑟& ⇔ 𝐼 ⊨ 𝑟'
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Semantic Encoding
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• Evaluate user-defined variables



• and are equivalent
• and are equivalent
• and are not equivalent

Equivalence Relation Verified by SMT Solver

• Case Study
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• and are equivalent1 ∧ 1 2 ∧ 2



END
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