
Verifying Data Constraint Equivalence in
FinTech Systems

Chengpeng Wang Prism Group, HKUST
Gang Fan Ant Group
Peisen Yao Zhejiang University
Fuxiong Pan Ant Group
Charles Zhang Prism Group, HKUST



FinTech Systems

• Offer financial services to consumers or businesses

1

• Mobile Payment Apps
• Peer-to-Peer Lending
• Personal Finance Apps

• Important to validate the correctness of financial data



Data Constraints in FinTech Systems

• A predicate over table attributes
• Operation: numeric comparison/computation, substring matching
• Control flow: sequencing, branch

2

• The amount is great than 0
• Two accounts are not null

• Examined upon huge relational tables per minute/hour

debug

load check

update
data



Equivalent Data Constraints

• Existence of equivalent data constraints
• Over 20% of data constraints are equivalent to others in Ant Group

• Root cause
• Unaware of existing data constraints

• Consequence
• Waste computation resources
• Redundant error messages

3



Resolving Equivalent Data Constraints

New DC

Equivalent Variants

Search Bot

DeveloperDC Repository

Cluster Bot Clusters Quality Assurance
Manager

Merge Suggestions

Equivalence
Searching

Equivalence
Clustering

Merge or commit

4

• Equivalence searching/clustering



Data Constraint Equivalence Verification

• Problem
• Given two data constraints r1 and r2, determine whether r1 is 

semantically equivalent to r2.

!"

#!"

5

• Challenge
• Achieve high efficiency, soundness, and completeness simultaneously

• Tens of thousands of data constraints can amplify the efficiency bottleneck.
• An unsound decision procedure would result in financial loss.
• An incomplete decision procedure would hide opportunities for optimization.



Existing Effort

• Term rewriting identifies equivalent variants
• Ensure soundness
• Discover restrictive forms of equivalent patterns
• Search vast space when applying rewrite rules

• SMT-based symbolic reasoning verifies logical equivalence
• Ensure soundness and completeness for decidable fragment
• SMT solver targets satisfiability problem instead of logical equivalence

checking
• Invoked thousands of times, degrading the efficiency

6



Motivating Example
• Lexical differences in non-equivalent

data constraints
• Example: (a) and (c)
• Pose constrain over different table

attributes

• Isomorphic structures in equivalent
data constraints

• Example: (b) and (d)
• Only differ in the order of commutative

operands and assertions

7



EqDAC: Key Idea
• Achieve an efficient decision procedure without “deep” semantic analysis

• (Over-approximation) Lexical difference-guided input generation refutes data
constraint equivalence

• (Under-approximation) The isomorphic structure proves data constraint equivalence
• Polynomial time!

𝑟! and r are semantically
equivalent

𝑟! and 𝑟 are divergent
under a given input

𝑟! and 𝑟 have isomorphic structures

8



Workflow of EqDAC

9

Divergence
Analyzer

Isomorphism
Analyzer SMT SolverSymbolic

Representation

EQ
Data Constraint Pair

NEQ

EQ, NEQ

Semantic Encoder

Semantic Encoding Equivalence Reasoning



Divergence Analysis

10

Enforce 𝝋𝟏 to be false Enforce 𝝋𝟐 to be true

[𝑡. 𝑜𝑖𝑑 → 0]

[𝑡. 𝑜𝑖𝑑 → 0,
𝑡. 𝑖𝑖𝑑 → 1,
𝑡. 𝑎𝑚𝑡 → 1,
𝑡. 𝑛𝑒𝑤 → 2]

false true

true

true

• Concretize data variables making two formulas evaluate differently,
which refutes the equivalence



Isomorphism Analysis

11

∨

∧

≠≠
t.iid 0 t.oid 0

∧ ∧

+ t.old

= ¬

t.out t.new

=

t.new-t.in

t.old

!∗

!∗

∨

∧

≠≠

t.iid0t.oid 0∧∧

+t.old

= ¬

t.outt.new

!∗=

t.new-t.in
t.old !∗

• Apply tree isomorphism algorithm to prove equivalence



Theoretical Result

12

Divergence
Analyzer

Isomorphism
Analyzer SMT SolverSymbolic

Representation

EQ
Data Constraint Pair

NEQ

EQ, NEQ

Semantic Encoder

• Theorem 1: Except for SMT solving, other steps of EqDAC run in polynomial time to N,
where N is the upper bound of the numbers of AST nodes for the two data constraints.

• Theorem 2: If the fragment of data constraints is decidable, EqDAC is sound and complete.



RQ1: Effectiveness

• Identify 26,789 equivalent pairs among 30,801 data constraints in Ant Group
• 7,842 data constraints can be removed.
• Error messages caused by data constraints in the same cluster can be merged

• Extreme case: 48 equivalent data constraints in a cluster

13



RQ2: Efficiency

• Equivalence clustering
• Analyze 30,801 data constraints in 2.89 h
• Peak memory: linear to #data constraints
• Time cost: Quadratic to #data constraints

14

• Equivalence searching
• #Data constraint = 30,801 – 1,000
• Peak memory: 527.87 MB (max), 527.1 MB (avg)
• Time cost: 2.50 sec (max), 1.22 sec (avg)



RQ3: Ablation Studies

15

• Equivalence clustering

• Equivalence searching

max: 2.50 sec, avg: 1.22 sec max: 6.56 sec, avg: 2.53 sec max: 1.48 sec, avg: 0.74 sec
EqDAC

Miss 37 equivalent
data constraints

EqDAC-NI EqDAC-NS

EqDAC-NI: no isomorphic analysis
EqDAC-NS: no SMT solving

EqDAC-ND: no divergence analysis



Conclusion
• Formulate the problem of equivalence data constraint verification

• Equivalence reasoning upon tens of thousands of programs, i.e., data constraints

• Propose an efficient, sound, and complete decision procedure
• Leverage lexical difference and isomorphic structures for acceleration

• Provide a fundamental component of equivalence searching and clustering
• Avoid the redundant checking of equivalent data constraints

16



Thank you for your listening!

17

Pre-print Tool



BACKUP

18



Syntax

• Data constraint syntax

19



Semantics

• An interpretation 𝐼 is a mapping which maps each data variable 
𝑣% to a value in its domain.

• Given a data constraint 𝑟, we say 𝐼 ⊨ 𝑟, i.e., 𝐼 is a model of 𝑟, if 
and only if all the assertions in 𝑟 hold under the interpretation 𝐼.

20



Data Constraint Equivalence

• The data constraints 𝑟& and 𝑟' are semantically equivalent, denoted 
by 𝑟& ≃ 𝑟', if and only if for any interpretation I, we have

𝐼 ⊨ 𝑟& ⇔ 𝐼 ⊨ 𝑟'

21



Semantic Encoding

22

• Evaluate user-defined variables



• and are equivalent
• and are equivalent
• and are not equivalent

Equivalence Relation Verified by SMT Solver

• Case Study

23

1

1
1

2

2
2

1

1

1

2

2

2

• and are equivalent1 ∧ 1 2 ∧ 2



END

24


