
Siro: Empowering Version Compatibility in
Intermediate Representations via Program Synthesis

Bowen Zhang
bzhangbr@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Wei Chen∗
wchenbt@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Peisen Yao
pyaoaa@zju.edu.cn

Zhejiang University
China

Chengpeng Wang
cwangch@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Wensheng Tang
wtangae@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Charles Zhang
charlesz@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Abstract
This paper presents Siro, a new program transformation
framework that translates between different versions of In-
termediate Representations (IR), aiming to better address
the issue of IR version incompatibility on IR-based software,
such as static analyzers. We introduce a generic algorithm
skeleton for Siro based on the divide-and-conquer principle.
To minimize labor-intensive tasks of the implementation pro-
cess, we further employ program synthesis to automatically
generate translators for IR instructions within vast search
spaces. Siro is instantiated on LLVM IR and has effectively
helped to produce ten well-functioning IR translators for dif-
ferent version pairs, each taking less than three hours. From
a practical perspective, we utilize these translators to assist
static analyzers and fuzzers in reporting bugs and achieving
accuracy of 91% and 95%, respectively. Remarkably, Siro has
already been deployed in real-world scenarios and makes
existing static analyzers available to safeguard the Linux
kernel by uncovering 80 new vulnerabilities.
ACM Reference Format:
Bowen Zhang, Wei Chen, Peisen Yao, Chengpeng Wang, Wensheng
Tang, and Charles Zhang. 2024. Siro: Empowering Version Com-
patibility in Intermediate Representations via Program Synthesis.
In 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (ASPLOS

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0386-7/24/04. . . $15.00
https://doi.org/10.1145/3620666.3651366

’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3620666.3651366

1 Introduction
Program analysis involves automatically analyzing program
properties through static and dynamic approaches. Central
to this technique is the use of Intermediate Representations
(IR), which are mid-level program representations produced
by compilers [3]. From a behavioral perspective, program
analyses can be abstracted into various IR manipulations.
For example, static analyzers [4, 82, 84, 89] traverse the IR
to reason about program facts, symbolic executors [9] sym-
bolically interpret the IR to compute path conditions, and
fuzzers [1, 27] perform instrumentation at the IR level to
obtain runtime feedback. Due to the close association with
IR, we refer to their implementations as IR-based software.
When the compilers frequently update themselves, com-

patibility issues arise between different versions of IR. Con-
sequently, IR-based software, which is typically built upon
a specific version of IR, cannot accept higher versions of IR
programs as input. This version capability issue also hinders
the collaboration of different IR-based software targeting
different IR versions, such as integrating an existing static
analyzer into a white-box fuzzer. Existing approaches to
address this issue involve either refactoring the IR-based
software to higher versions or compiling programs to the
version supported by the software. Both approaches require
significant manual work, which imposes a heavy burden on
program analysis researchers and practitioners.
A possible workaround is to introduce an “IR translator”

that converts IR programs between versions, allowing the
translated IR programs to be directly accepted by IR-based
software. Unfortunately, previous attempts at implement-
ing similar proposals within the LLVM community have
been unsuccessful, indicating a heavy reliance on manual
labor [58, 63].

https://doi.org/10.1145/3620666.3651366
https://doi.org/10.1145/3620666.3651366

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zhang et al.

To enhance IR version compatibility, we introduce Siro
(Synthesis-powered IR translation), a framework for effi-
ciently implementing IR translators between different ver-
sions. The motivation is that while IR compatibility involves
many changes, the information provided by IR for program
analysis and the functionality of IR libraries remain im-
mutable. Specifically, Siro alleviates manual efforts through
three key aspects. First, it leverages the IR library within
the compiler as readily available material to construct IR
translators. Next, Siro divides and conquers the hierarchical
structure of the IR by creating a version-agnostic algorithm
skeleton for IR translation. Within this skeleton, the remain-
ing task is to translate various IR instructions. Furthermore,
recognizing the significant presence of common instructions
across IR versions, we transform the writing of their trans-
lators into a test case-guided program synthesis problem.
Specifically, our synthesis system takes user-provided IR
programs and employs their execution behavior as an oracle
to incrementally achieve the correct implementation of these
instruction translators. As a result, our framework replaces
the manual effort of writing IR translators by providing test
cases and only handling a small number of new instructions.

The experimental results are highly encouraging. Siro suc-
ceeded in synthesizing ten LLVM IR translators for different
version pairs, requiring only ten days effort from one person.
We used the generated IR translators to translate programs
from both real-world projects and benchmark datasets. The
evaluation resulted in accuracy rates of 91% for bug detection
and 95% for fuzzing target reproduction, providing strong
evidence for the feasibility of this technology. Actually, Siro
has already been deployed in the industry, assisting a kernel
bug detector in obtaining the IR program of the Linux kernel,
leading to the discovery of 80 new bugs.

Our high contributions are highlighted as follows:
• We identified a practical issue across the program analysis
community, known as the IR version compatibility issue,
and highlighted the shortcomings of existing solutions.
• We explored a novel notion, IR translation, and proposed
the Siro framework for efficiently implementing IR trans-
lators. Within the framework, we introduced a generic
algorithmic skeleton and designed a program synthesis
system to efficiently fill in the missing IR instruction trans-
lators in the skeleton.
• We conducted a comprehensive evaluation to demonstrate
the feasibility of this technique and showcased the effec-
tiveness and efficiency of Siro.

2 Background and Motivation
In this section, we first discuss the IR version trap and three
technical choices to overcome it. We then present IR transla-
tion as our choice and highlight the associated challenges.

High-version
Compiler

Low-version
Compiler

Fuzzer

Static Analyzer
Bug Report

Program Crash

① ②Source
Code

Figure 1. Scenarios of IR version trap

2.1 The IR Version Trap
Compilers evolve frequently. For instance, the popular com-
pilers LLVM [60] and GCC [31] have undergone 20 and 47
version updates over the past decade, respectively. While
backward compatibility is often limited [30, 44, 59], forward
compatibility is not guaranteed. Ultimately, such compatibil-
ity issues render program analysis tools in lower versions
unusable and hinder collaboration within the program anal-
ysis community. In this paper, we refer to this phenomenon
as the “IR version trap.” We illustrate the consequences of
the IR version trap through two typical scenarios in Fig. 1.

Scenario I. (Static Analysis) A static bug detector was origi-
nally developed on top of a low-version IR. However, certain
projects can only be compiled using a higher version of
the compiler, generating IR programs in the higher version.
Consequently, the static analyzer cannot accept these high
versions of the IR programs as inputs, which is demonstrated
by the edge ①, hampering the usability of the analyzer.

Scenario II. (White-box Fuzzing) Fuzzers [12, 13, 22] often
rely on static analysis to obtain different semantic properties
of the program under test, such as pointer information and
numeric invariants. However, the fuzzers would not benefit
from the static analyzers if they are developed on top of
different IR versions, The edge ② shows the failure of the
cooperation between two kinds of IR-based software.
Furthermore, the IR version trap hinders the develop-

ment of the program analysis community, considering the
increasing trend of combining static and dynamic analy-
sis [42, 45, 48] or integrating multiple static analyses through
layered design [10, 54, 67]. As the number of IR-based soft-
ware increases, this trap becomes more prevalent and chal-
lenging to overcome. In what follows, we discuss several
types of mitigations to this issue.

2.2 Escaping from IR Version Trap
The IR version trap has gained some attention in both aca-
demic and industrial practice. Next, we briefly introduce two
common strategies and the new strategy we are exploring
in Fig. 2. Initially, suppose the compiler can only generate a
higher version IR, while the IR-based software 𝑆𝑙𝑜𝑤 operates
in a lower version, and thus, is inapplicable in higher version
IR.

Siro: Empowering Version Compatibility in Intermediate Representations via Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

𝑺𝒍𝒐𝒘

Source
Code ×

Cannot
apply

(c) Translating

Apply

High-version
Compiler

(b) Compiling with
Low-version Compiler

𝑺𝒉𝒊𝒈𝒉

(a) Upgrading

Apply

Figure 2. Three strategies to escape from the IR version trap

Table 1. Statistics of LLVM IR-based software

Software Description IR Version # IR Versions # Maintainers

KLEE Symbolic execution engine 13.0 11 89
SeaHorn Software model checker 5.0 2 19
SVF Static value-flow analyzer 13.0 8 67
IKOS Abstract interpretation framework 14.0 8 7

Strategy I: Upgrading.We show the upgrading approach
in Fig. 2(a), which migrates an IR-based software to the high
version (𝑆ℎ𝑖𝑔ℎ), to be capable of taking the high version of IR
as a valid input. However, upgrading the software against
one new IR version is difficult and often requires laborious
manual efforts since the developers have to deal with API
changes and related compilation errors. In addition, since
the upgrade nearly touches each component of IR-based soft-
ware, all relevant developers have to review the functionality
correctness. For example, a single LLVM version upgrade in
the Rust compiler [78] takes over one month to finish, whose
discussions involve 167 posts, 20 developers, and 33 commits.
Such effort is needed whenever a new IR version is released.
Similarly, as listed in Tab. 1, the upgrading approach also
troubles developers in all other IR-based software. As a re-
sult, numerous IR-based software are unable to keep up with
the latest IR versions, due to insufficient active maintainers.
Therefore, it is impractical and laborious to address the IR
version trap using the upgrading approach.

Strategy II: Compiling. Fig. 2(b) demonstrates the com-
piling approach that compiles a project with a low-version
compiler. The generated IR is restricted to the low version
and can be handled by the IR-based software directly. How-
ever, the complexity and diversity of build systems increase
the difficulty of applying the approach. Specifically, the de-
velopers have to drown in the details of dependency manage-
ment, compiling, and linking. Meanwhile, the weak compi-
lation capability of low-version compilers can even worsen
the situation, leading to failed compilations of many real-
world projects. According to our investigation, open-source
fundamental projects, including Linux, LLVM, QT, and Fire-
fox [28, 56, 62, 73], cannot be compiled with low-version
compilers. Therefore, the compiling approach fails to be a
practical solution as well.

Strategy III: Translating. Another alternative is to trans-
late the IR programs between different versions, which is
inspired by the program transpilation technique [17]. As
shown in Fig. 2(c), a high-version compiler first generates the
IR in a high version, and then the IR translator downgrades

the IR to low version, which can be further processed by
the IR-based software. Obviously, the IR translation process
is isolated from the IR-based software and the compilation
process, which implies that it requires no modification to
either the project’s default compiler or the IR-based software
itself. Additionally, while upgrading and compiling must be
performed on a per-software basis, the IR translator offers
a broad range of benefits that can be applied generally for
multiple IR-based software. For example, both scenarios in
Fig. 1 can be resolved with the translating approach.
Our Choice. After comparing the above strategies, it is

evident that IR translation offers a promising prospect for
addressing the IR version trap. It provides a flexible bridge,
connecting different ecosystems caused by version discrep-
ancies, thereby fostering interaction within the program
analysis community. However, this approach has not been
sufficiently discussed in the community, leading to uncer-
tainties regarding its feasibility, algorithms, and efficient
implementation. Through this article, we intend to address
these concerns and enable the program analysis community
to benefit from this technique.

3 IR Translation Essentials
This section reveals a holistic journey of designing the IR
translation technique. It covers how we define the technical
roadmap (§ 3.1), propose algorithmic frameworks (§ 3.2), and
identify opportunities for program synthesis (§ 3.3).

3.1 Demystifying the IR Version Trap
The goal of IR translation is to help IR-based software resolve
version traps and produce consistent analysis results. To
achieve such an objective, we first formulate the IR from a
program analysis perspective, then, we design the technical
approach by examining the root cause of the IR version trap.
IR Formulation. As formulated in Fig. 3, IR provides pro-
gram information to IR-based software in a hierarchical way.
Specifically, A top-level IR program 𝑃 consists of global vari-
ables 𝐺 and functions 𝐹 . The basic blocks 𝐵 within each
function form the program’s control flow. The instructions 𝐼
that are sequentially contained within each basic block serve
as the fundamental semantic components within the IR, with
each kind of instruction enforcing a specific operation on its
operand values. Notably, instructions can reference almost
all IR elements through such operand relationships. For in-
stance, consider a call instruction 𝑣𝑐𝑎𝑙𝑙 ← call(𝑓1, 10, 𝑎𝑟𝑔3),
which invokes a callee function 𝑓1 using the constant value
10 and the argument value 𝑎𝑟𝑔3 from its caller as parameters,
and then produces a return value 𝑣𝑐𝑎𝑙𝑙 . In this example, four
operand values are involved. Thus, despite the clarity of the
formulation, why is IR-based software unable to manipulate
such information across versions?
Understanding Version Trap. An IR-based software typi-
cally needs to load the serialized IR program into memory

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zhang et al.

IR Program 𝑃 := 𝐹+ 𝐺+

Function 𝐹 := 𝑓 (𝑎𝑟𝑔1, · · · , 𝑎𝑟𝑔𝑛){(𝐵)+}
Basic Block 𝐵 := (𝐼)+ Argument 𝑎𝑟𝑔 ∈ 𝐴𝑟𝑔

Instruction 𝐼 := 𝑣0 ← ⊕(𝑣1, · · · , 𝑣𝑛)
Operator ⊕ := add | load | branch | ret | call | · · ·

Value 𝑣 := 𝐺 | 𝐴𝑟𝑔 | 𝐹 | 𝐵 | 𝐼 | 𝐶
Global 𝑔 ∈ 𝐺 Constant 𝑐 ∈ 𝐶

Figure 3. IR formulation

Table 2. IR libraries to construct an IR translator

IR Library Functionality
IR Reader ❶ Load a persisted IR program into the memory.
IR Getter ❶ Access information from an IR memory object.
IR Builder ❷ Construct in-memory IR programs and IR elements.
IR Verifier ❷ Verify the integrity and legality of an IR program.
IR Writer ❷ Write an in-memory IR program into a persisted one.

and then conduct the analysis logic by using the APIs pro-
vided by the IR libraries tomanipulate IR. During this process,
the IR version trap can arise through three incompatibilities.
• Text incompatibility. The serialization format of IR pro-
grams is inconsistent between versions, resulting in in-
compatible IR loading.
• API incompatibility. The frequent changes in the APIs
of IR libraries result in inconsistent implementations of
the same analysis logic across different versions.
• Semantic incompatibility. New versions sometimes in-
troduce new semantics through new IR instructions, ne-
cessitating special handling to ensure compatibility.

Notably, only the third one brings additions to our formula-
tion, whereas the first two stem from engineering details.
Translation “In-memory”. Facing such root causes, our
philosophy is not to attempt to individually address the
changes regarding the text format and API usages. Doing
so would lead us into the same pitfalls as the compiling ap-
proach and the upgrading approach. On the contrary, we
observe that regardless of how versions may change, the
essential functionality provided by IR libraries remains im-
mutable and robust. This fact can be leveraged to develop IR
translators for various versions.

Tab. 2 lists the functionalities of IR libraries utilized to con-
struct an arbitrary IR translator, where ❶ and ❷ represent
the source and target IR versions, respectively. By flexibly
combining two versions of IR libraries, we confine the IR
translation tasks to the translation of in-memory IR pro-
grams, directly overcoming text incompatibility. Among the
libraries, the IR getters and builders are the most important.
The in-memory IR translation, at its core, utilizes these two
kinds of libraries to implement a so-called “Extract and

Reconstruct” principle: for any IR element, we first extract
the information it provides using IR getters according to the
formulation, and then use IR builders to reconstruct it in the
target version. Readers will observe multiple instantiations
of this principle within the translation algorithms.

Summary. IRs are formulated to contain fundamental
elements to describe programs. Despite the IR compat-
ibility issue, the invariants of IR enable us to follow
the “extract and reconstruct” principle to develop an
in-memory approach with IR libraries.

3.2 Translation Skeleton
Observing that instructions are the most crucial and complex
components within IR, subject to notable instability in APIs
and semantics, we break down an IR translator into two parts:
a translation skeleton for IR elements except for instructions,
and dedicated instruction translators. From a high level, the
translation skeleton is version-agnostic and can be reused for
different versions, and thus could be manually written with
negligible yet one-time effort. On the contrary, instruction
translators that are complex and heavily dependent to APIs
of different versions, are more deserving to be automatically
synthesized. In what follows, we introduce the skeleton.
As described in Alg. 1, the skeleton is built by dividing

and conquering the in-memory, hierarchical structure of
IR formulated in Fig. 3. We translate each IR element layer
by layer in a top-down manner and encapsulate this into an
interface, which facilitates program synthesis in the subse-
quent stages. Indeed, the extract and reconstruct principle
permeates the entirety of the translation process. Specifi-
cally, the translation of the top-level IR program 𝑃 = (𝐺, 𝐹),
involves translating all global variables and functions. The
translation of a function is divided into translating the argu-
ment list and its included basic blocks (TranslateFunc). For
each basic block, we translate the instructions sequentially
(TranslateBlock). Finally, to translate an instruction, we de-
termine its specific instruction kind and dispatch it to corre-
sponding instruction translation functions (TranslateInst).
In the next subsection, we introduce how to construct these
instruction translators.

Summary. Version-independent translation logic
could be extracted from IR translators to form a trans-
lation skeleton, which is established following the
divide-and-conquer principle.

3.3 Guidance to Instruction Translators
So far, through the in-memory approach and the version-
independent skeleton, we have overcome text incompatibil-
ity and part of API incompatibility. To address the remaining
compatibility problems, we divide instructions into “com-
mon” and “new” instructions and handle them in distinct

Siro: Empowering Version Compatibility in Intermediate Representations via Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 1: A high level skeleton of IR translation
Input: Source version IR program 𝑃 = (𝐺, 𝐹);
Output: Target version IR program 𝑃 ′ = (𝐺 ′, 𝐹 ′);

1 𝐺 ′ ← ∅; 𝐹 ′ ← ∅;
2 for 𝑔 ∈ 𝐺 do 𝐺 ′ ← 𝐺 ′ ∪ {TranslateGlobal(𝑔)} ;
3 for 𝑓 = (𝐴𝑟𝑔𝑠, 𝐵) ∈ 𝐹 do
4 𝐹 ′ ← 𝐹 ′ ∪ {TranslateFunc(𝐴𝑟𝑔𝑠, 𝐵)}
5 return 𝑃 ′ = CreateIRProgram(𝐺 ′, 𝐹 ′);
6 Function TranslateFunc(Args, B):
7 𝐴𝑟𝑔𝑠′ ← ∅; 𝐵′ ← ∅;
8 for 𝑎𝑟𝑔 ∈ 𝐴𝑟𝑔𝑠 do
9 𝐴𝑟𝑔𝑠′ ← 𝐴𝑟𝑔𝑠′ ∪ {TranslateArg(𝑎𝑟𝑔)};

10 for 𝑏 ∈ 𝐵 do 𝐵′ ← 𝐵′ ∪ {TranslateBlock(𝑏)} ;
11 return 𝑓 ′ = CreateFunc(𝐴𝑟𝑔𝑠′, 𝐵′)
12 Function TranslateBlock(b):
13 𝑖𝑛𝑠𝑡𝑠′ ← ∅;
14 for 𝑖 ∈ 𝑏 do 𝑖𝑛𝑠𝑡𝑠′ ← 𝑖𝑛𝑠𝑡𝑠′ ∪ [TranslateInst(𝑖)] ;
15 return 𝑏′ = CreateBlock(𝑖𝑛𝑠𝑡𝑠′);
16 Function TranslateInst(i):
17 if 𝑖 is add then 𝑖′ ← TranslateAdd(𝑖) ;
18 else if 𝑖 is load then 𝑖′ ← TranslateLoad(𝑖) ;
19 else if 𝑖 is branch then 𝑖′ ← TranslateBranch(𝑖) ;
20 else if 𝑖 is . . . then 𝑖′ ← . . . ⊲ others;
21 return 𝑖′;

strategies. We also highlight the challenges of automatically
synthesizing the instruction translators.

3.3.1 HandlingCommon Instructions. Common instruc-
tions refer to the instructions shared between two versions.
Therefore, our “extract and construct” pattern is instanti-
ated to a one-to-one mapping. However, implementing these
common instructions remains challenging due to the require-
ment of developers to possess a deep understanding of the
instructions. This complexity stems from two key factors:

• Operands. As evident in the formulation in Fig. 3, instruc-
tions involve various IR elements due to their complex
operand relationships. Therefore, a correct translation ne-
cessitates a proper understanding of these relationships.
• Sub-kinds. Instructions of the same kind may implicitly
have sub-kinds, resulting in divergent operand relation-
ships and necessitating different translation logics.

We take the branch instruction as an example to illustrate
such complexities in Fig. 4. Here, TranslateBranch is the
desired implementation that translates instruction from the
source version with type Branch_s to the target version with
type Branch_t. In line 2, the check inst.IsUncondBr() is
driven by the existence of sub-kinds, specifically determin-
ing if the branch instruction is conditional or not. As a result,
the usage of APIs diverges to construct translation logic for
different sub-kinds, i.e., lines 3-5 and 7-13. The translation
process still enforces the “extract and reconstruct” manner,

1 Branch_t TranslateBranch(Branch_s inst) {
2 if(inst.IsUncondBr ()) {
3 Block_s b = inst.GetBlock (0);
4 Block_t bb = TranslateBlock(b);
5 return Builder.CreateBr(bb);
6 } else {
7 Value_s cond = inst.GetCond ();
8 Block_s b0 = inst.GetBlock (0);
9 Block_s b1 = inst.GetBlock (1);
10 Value_t condd = TranslateValue(cond);
11 Block_t bb0 = TranslateBlock(b0);
12 Block_t bb1 = TranslateBlock(b1);
13 return Builder.CreateCondBr(condd , bb0 , bb1);
14 } }

Figure 4. Instruction translator of branch instruction

as we interweave the usage of IR getters and builders. Ad-
ditionally, it is worth noting that the translation interfaces
for each exposed IR element in the algorithm skeleton (as
shown in Fig. 1) also play a significant role in this process.
This integration becomes possible by adhering to the divide
and conquer principle.
In fact, common instructions constitute the majority of

the development effort in IR translators. Therefore, to spare
developers from handling their complexities and dealing
with unstable APIs, we choose to employ program synthesis
to automatically generate their translators. Specifically, as
shown in the following Def. 3.1, we abstract the desired
translator for each common instruction kind 𝑘 as a mapping
M𝑘 , which serves as the goal of program synthesis.

Definition 3.1 (Common Instruction Translator). For each
common instruction kind 𝑘 ∈ 𝐾 , its instruction translator is
defined as a mappingM𝑘 : [Σ𝑘 ↦→ Λ𝑘], where:
• 𝜎 ∈ Σ𝑘 represents a predicate to differentiate a sub-kind
of 𝑘 . It is an equality check on a specific property of the
instruction, achieved via the IR getters of enum/bool type
corresponding to instruction kind 𝑘 . Additionally,M𝑘 can
include only one predicate 𝑡𝑟𝑢𝑒 , indicating the presence
of only one sub-kind. Otherwise, ifM𝑘 has multiple predi-
cates, only one of them can be true at runtime.
• 𝜆 ∈ Λ𝑘 : 𝐼𝑘 ↦→ 𝐼 ′

𝑘
denotes an atomic translator. It handles

the translation of a specific sub-kind of 𝑘 , using three
materials: IR getters of 𝑘 , IR builders producing 𝑘 , and
operand translator interfaces. 𝐼𝑘 and 𝐼 ′

𝑘
represent the sets

of instructions of kind 𝑘 in the source and target versions.

3.3.2 Handling New Instructions. New instructions can
be introduced in higher versions, constituting a small pro-
portion of the overall set of instructions. However, their
translations are not suitable for program synthesis since new
semantics typically cannot be fully equivalent to the com-
bination of multiple common instructions. Therefore, we
propose two principles: First, check the necessity of transla-
tion. Many new instructions can never be encountered by the

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zhang et al.

IR-based software, as they are designed for specific targets or
serve as internal instructions used within optimizations e.g.,
Inc instruction in DEX IR [74]. By referring to documenta-
tion and community discussions, such unnecessary handling
can be avoided. Second, achieve analysis preserving transla-
tion. Specifically, we can employ a one-to-many translation
to ensure that the resulting IR programs are equivalent in
terms of program analysis results [91]. Typically, ensuring
that the translated instruction produces the same effects on
control flow and data flow is sufficient.

3.3.3 Synthesis Challenges. So far, the IR translation
technique itself has been discussed. Additionally, if the trans-
lators of common instructions in § 3.3.1 could be automati-
cally generated through program synthesis, our system will
be capable of efficiently producing IR translators for any ver-
sion pair to conquer the IR version trap. However, applying
program synthesis techniques to our problem is far from
trivial. Since the program synthesizer does not understand
IR translation and the APIs, our synthesis problem faces two
challenges, including a large search space and unconven-
tional validation.
Search Space. Synthesizing a translator for instructions
utilizes three sets of APIs: IR getters, IR builders, and operand
translators. Since instructions are crucial elements in IR,
the getters/builders APIs are abundant in a compiler, which
forms a vast number of possibilities. On the contrary, the
right implementations are rare, not to mention the need to
differentiate between various sub-kinds.
Validation. Worse, even if we generate some candidate
translators for various instructions, we cannot independently
validate their correctness. This is primarily because an IR
program typically consists of multiple instructions. One can
imagine that given an IR program as a test case, we would
need to simultaneously verify multiple candidates. Such a
combination further exacerbates the search space.

Summary. Common instructions translators are ab-
stracted as atomic translators paired with predicates.
However, automatic synthesis encounters two chal-
lenges from search space and validation aspects.

4 Instruction Translator Synthesis
In this section, we provide an overview of our synthesis
system (§ 4.1), followed by the introduction of three core
aspects: generating candidates using type information (§ 4.2),
refining candidates through test cases (§ 4.3), and optimizing
the synthesis process to facilitate pruning (§ 4.4).

4.1 System Design
Fig. 5 illustrates Siro’s synthesis system, which essentially
is an iterative continuous search space reduction process for
potential instruction translators. It takes IR libraries and test
cases as initial inputs and ultimately produces a correct IR

TestcasesPer-test Translators

Type-guided
Generation

IR Translator

Instruction
Translators Validation Results

Profile-guided
Enumeration

Test-based
Validation

Refinement

IR libraries

Skeleton
Completion

Figure 5. Overall synthesis system

Algorithm 2: Program synthesis process
Input: Test cases 𝑇 . IR libraries 𝐿𝑖𝑏. Instruction kinds 𝐾 .
Output: IR translator code.

1 Λ∗ ← Generate(𝐿𝑖𝑏, 𝐾); ⊲ ➊

2 M∗ ← ∅;
3 for 𝑡 ∈ 𝑇 do
4 𝜏𝑡 ← Profile(𝑡); ⊲ ➋

5 𝑃𝑇𝑡 ← Enumerate(Λ∗, 𝜏𝑡); ⊲ ➋

6 𝑃𝑇✓𝑡 ← Validate(𝑃𝑇𝑡 , 𝑡); ⊲ ➌

7 Refine(M∗, 𝑃𝑇✓𝑡 , 𝜏𝑡); ⊲ ➍

8 return CompleteSkeleton(M∗); ⊲ ➎

translator consisting of our translation skeleton and synthe-
sized instruction translators. As such, the task of developers
writing instruction translators could be replaced by simply
collecting test cases, each of which is a simple IR program
whose return value would serve as an oracle for us.

Specifically, Siro first utilizes the type information pro-
vided by IR libraries to generate numerous candidate atomic
translators for each kind of instruction, whereas the correct-
ness and sub-kind information of the candidates is initially
unknown (➊). Next, we perform an iteration on the test cases
to refine the candidates. Specifically, the test cases would
help us continuously exercise the correctness of candidates
while establishing the mapping between predicates and cor-
rect candidates (➋➌➍). After processing enough test cases,
Siro generates instruction translators based on refined can-
didates, fills them into the translation skeleton in § 3.2, and
produces a complete IR translator (➎).

The key factor behind the iteration is our “ad-hoc” design
in Alg. 2, namely per-test translator , which combines sev-
eral candidate atomic translators and would only be used
to translate the current test case. Specifically, to construct
the per-test translators for test case 𝑡 , Siro first probes its
involved instructions with profiling technique, generating a
table 𝜏𝑡 (line 4). Guided by 𝜏𝑡 , the candidate atomic transla-
tors Λ∗ are enumerated to form the per-test translators 𝑃𝑇𝑡
(line 5). The purpose of these per-test translators is to trans-
late case 𝑡 and validate the oracle (line 6). Finally, from the
succeeded ones 𝑃𝑇𝑡✓ , we can refine the mappingM∗, which
records an over-approximation of the correctness and paired
predicates related to the candidates (line 7). In summary,
each per-test translator can be likened to a multivariable

Siro: Empowering Version Compatibility in Intermediate Representations via Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

equation, where each variable represents an atomic trans-
lator. By constructing and solving more equations, we can
further approximate the correct solution for each variable.

4.2 Type-guided Generation
The synthesis system starts by generating candidate atomic
translators Λ∗. For each instruction kind 𝑘 , the candidates Λ∗

𝑘

are the superset of its correct atomic translators Λ𝑘 . The intu-
ition behind candidate generation is, despite the complexities
of IR libraries, we observe that a correct atomic translator
should first be well-typed. For instance, in Fig. 4, the atomic
translator for branch instruction should initially take the
parameter with type Branch_s and through the utilization
of APIs, finally produce the result with type Branch_t. To
this end, we employ the well-studied component-based syn-
thesis [25, 46] to analyze the type information of APIs and
generate the initial candidates for us.

Specifically, to generate suchwell-typed candidates atomic
translators, Siro first encodes the required types and APIs
onto a graph in Def. 4.1, where the edges represent the con-
sumption and production relations between APIs and types.

Definition 4.1 (IR Type Graph). Given the IR libraries and
operand translators provided by our skeleton, the IR type
graph is defined as a directed graph G = (N , E). Specifically:
• Node Set: N = A ∪ Ω, where 𝑎 ∈ A represents an API
function (IR getters, IR builders, and operand translators)
and 𝜔 ∈ Ω represents a type.
• Edge Set: E ⊂ N × N . A return edge 𝑎 → 𝜔 ∈ (A × Ω)
indicates that an API function 𝑎 produces a type 𝜔 as
its return value. A parameter edge 𝜔

𝑥−→ 𝑎 ∈ (Ω × A)
indicates that a type𝜔 can be consumed by anAPI function
𝑎 as a parameter. The edge label 𝑥 ∈ Z+ differentiates the
parameter positions.

Subsequently, the candidates can be generated by search-
ing for the so-called feasible subgraphs in Def. 4.2. Essen-
tially, a feasible subgraph represents a valid implementation
of atomic translator that conforms to the type signature us-
ing APIs, and can be searched out via backward BFS from
the target type. In the supplementary material, we have pro-
vided an example to illustrate the feasible subgraphs related
to Fig. 4.

Definition 4.2 (Feasible Subgraph). Consider an IR type
graph G and a common instruction kind 𝑘 , where the kind 𝑘
has types𝜔𝑘 , 𝜔

′
𝑘
∈ Ω defined in source and target IR libraries.

A subgraph G′ = (A′ ∪ Ω′, E′) ⊂ G is a feasible subgraph
w.r.t G and 𝑘 , iff it obeys two rules:
• Consumption Rule. For every API 𝑎′ ∈ A′, it has pre-
cisely 𝑛 incoming edges in G′ where 𝑛 equals the parame-
ter number of 𝑎′. In addition, the labels of these incoming
edges span from 1 to 𝑛. This rule ensures that each invo-
cation of an API consumes the appropriate types.

Algorithm 3: Form of a per-test translator
1 Function TranslateInst(i):
2 if loc(𝑖) = 1 then 𝑖′ ← 𝜆1 (𝑖);
3 else if loc(𝑖) = 2 then 𝑖′ ← 𝜆2 (𝑖);
4 . . . ;
5 else if loc(𝑖) =𝑚 then 𝑖′ ← 𝜆𝑚 (𝑖);
6 return 𝑖′;

• Reachability Rule. Firstly, the source and target types
𝜔𝑘 , 𝜔

′
𝑘
belong to Ω′. Secondly, for each type 𝜔 ′ ∈ Ω′ −

{𝜔 ′
𝑘
}, there exists a reachable path 𝑝 in G′ from 𝜔 ′ to 𝜔 ′

𝑘
.

It ensures that the target type𝜔 ′
𝑘
is obtained by consuming

the other types in G′ including 𝜔𝑘 .

4.3 Test-guided Synthesis
Regarding the candidates Λ∗ generated in § 4.2, two issues
remain unresolved: (a) identifying the correct candidates. (b)
associating a correct candidate with its corresponding predi-
cate. To answer them, Siro profiles each test case (§ 4.3.1)
to enumeration per-test case translators (§ 4.3.2), validates
them (§ 4.3.3) to refine the candidates (§ 4.3.4), and outputs
complete instruction translators (§ 4.3.5).

4.3.1 Profiling. Profilers provide essential information to
construct per-test translators for each test case by scanning
involved instructions, and can be automatically generated
given the IR library. To obtain different information, we
designed three profilers shown as follows:
• Location Profiler is used to label each involved instruc-
tion with a unique identifier. It can be achieved by tagging
the instruction based on its traversal order.
• Kind Profiler is used to determine the kind of each in-
volved instruction. Its implementation is similar to lines
18-20 in Alg. 1, where the instruction kind is distinguished
by consecutive type checks.
• Sub-kind Profiler obtains the runtime values of the pred-
icates of each instruction. It is achieved by invoking the
bool/enum IR getters. For instance, for a specific uncon-
ditional branch instruction in Fig. 4, the sub-kind profiler
can obtain IsUncondBr() == True for it.
We organize the profiling data into a profile table (Def. 4.3)

to guide further per-test translator enumeration.

Definition 4.3 (Profile table). For a test case 𝑡 with𝑚 instruc-
tions, the profiling results are defined as a table 𝜏𝑡 : Z+ ↦→
(𝐾 × Σ&). Each instruction in 𝑡 is denoted as 𝑙 → (𝑘, 𝜎&),
where 𝑙 ∈ Z+ denotes the unique location, 𝑘 ∈ 𝐾 identifies
its kind, and 𝜎& ∈ Σ& records the conjunction of all possible
predicates at runtime.

4.3.2 Enumeration. The enumeration utilizes the profile
table to compose a set of “ad-hoc” per-test translators 𝑃𝑇𝑡 .
We slightly modify TranslateInst in Alg. 1 to Alg. 3 to form
a per-test translator. Notably, for each location 𝑥 ∈ {1 . . .𝑚},

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zhang et al.

Translated t’

Per-test
Translators 𝑷𝑻𝒕

Translate

Testcase t

Compile

Compile

Executable

Executable

Same output?
Y

𝑷𝑻𝒕√

𝑷𝑻𝒕×
Otherwise

Figure 6. Validate per-test translators via differential testing

there is a box 𝜆𝑥 , meaning that it could be filled with possible
candidate atomic translators. By enumerating these boxes
in each location, per-test translators can be obtained as a
set of lists (Def. 4.4). For example, if a test case 𝑡 includes
three instructions, which have 3, 4, 5 candidates according
to their kinds, then 60(= 3 ∗ 4 ∗ 5) per-test translators would
be generated for validation.

Definition 4.4 (Per-test Translators). Given a test case 𝑡
with𝑚 instructions, the per-test translators after enumera-
tion is a set 𝑃𝑇𝑡 . Each element𝑝𝑡 ∈ 𝑃𝑇𝑡 is a list {𝜆1 . . . 𝜆𝑥 . . . 𝜆𝑚},
where 𝜆𝑥 is an atomic translator candidate assigned for in-
struction at location 𝑥 , enumerated from set Λ∗

𝜏𝑡 [𝑥] .𝑘 .

4.3.3 Validation. To validate per-test translators, we adapt
differential compiler testing [50, 53, 90] to the context of IR
translation. As shown in Fig. 6, a per-test translator 𝑝𝑡 ∈ 𝑃𝑇𝑡
would be placed into a set 𝑃𝑇✓𝑡 if it successfully finishes the
translation and compilation, and passes the execution oracle.
Specifically, the test cases are designed in the form of an
IR program of source version that includes a main function.
The main function returns a constant value during execu-
tion with no inputs, which is given along with the test case
as the oracle. Such a form is commonly found in the test
suites of mainstream compilers. Overall, the validation pro-
cess provides us with a criterion: if a candidate can correctly
translate an instruction 𝑖 in test case 𝑡 , then it must have
participated in at least one of 𝑃𝑇✓𝑡 .
Indeed, it is possible to replace this validation approach

with translation validation [65, 66], which could hopefully
reduce the average size of 𝑃𝑇✓𝑡 . Unfortunately, the transla-
tion validator itself could fall into the IR version trap, e.g.,
the cutting-edge tool Alive2 [65] fails to support multiple IR
versions. Moreover, the constraint solving makes the vali-
dation process time-consuming. Hence, for practicality and
efficiency, we chose the current testing-based approach.

4.3.4 Refinement. The refinement in Alg. 4 uses a map-
pingM∗

𝑘
: [Σ&

𝑘
↦→ Λ∗

𝑘
] for each kind 𝑘 , conservatively record-

ing the correct candidates and their predicates. For each in-
struction at location 𝑥 in the test case 𝑡 , we collect the refined
candidates Λ✓𝑥 that participate in the successful translation
𝑃𝑇✓𝑡 and obtain the kind 𝑘 and conjuncted predicates 𝜎& of
the instruction by querying 𝜏𝑡 (line 3). Then,M∗𝑘 is updated
with additional predicates and refined candidates (lines 4-5).

Algorithm 4: Refining the atomic translators
1 Function Refine(M∗, 𝑃𝑇✓𝑡 , 𝜏𝑡):
2 for 𝑥 ∈ 1 . . .𝑚 do
3 Λ✓𝑥 ← {𝑝𝑡 [𝑥] | 𝑝𝑡 ∈ 𝑃𝑇✓𝑡 }; (𝑘, 𝜎&) ← 𝜏𝑡 [𝑥];
4 if 𝜎& ∉ keys(M∗

𝑘
) then M∗

𝑘
[𝜎&] ← Λ✓𝑥 ;

5 else M∗
𝑘
[𝜎&] ← M∗

𝑘
[𝜎&] ∩ Λ✓𝑥 ;

1 define i32 @main() {
2 entry:
3 ; ...
4 ; %a == 10, %b ==10
5 %ret ← %a - %b
6 return %ret
7 } ; oracle: 0

1 define i32 @main() {
2 entry:
3 ; ...
4 ; %c == 20, %d ==10
5 %ret ← %c - %d
6 return %ret
7 } ; oracle: 10

Figure 7. Two simplified test cases. Before line 5, in the left
case, variables 𝑎 and 𝑏 are both evaluated to 10, resulting in
a return value of 0. In the right case, variables 𝑐 and 𝑑 are
evaluated to 20 and 10 respectively before line 5, leading to
a return value of 10.

Note that in addition to those entirely correct per-test
translators, the set 𝑃𝑇✓𝑡 may contain per-test translators
that are composed of some incorrect atomic translators. Con-
sider the subtraction instruction %ret← %a - %b in the left
test case of Fig. 7. If an incorrect atomic translator trans-
lates it to %ret ← %a - %a with other instructions being
correctly translated, the return value of the translated test
case remains 0. In this case, this atomic translator will not be
refused because our refinement process only rejects atomic
translators that are definitely incorrect, i.e., not participating
in any successful translation. Hence, to refuse such incorrect
atomic translator, one needs to provide a test case such as the
right case in Fig. 7. That’s because when line 5 is incorrectly
translated to %ret← %c - %c, the latter would be evaluated
to 0 during execution, which violates the oracle.

4.3.5 Skeleton Completion. Once all the test cases have
been processed, we generate for each instruction kind 𝑘 the
instruction translatorM𝑘 fromM∗𝑘 . In fact, the correct atomic
translators for kind 𝑘 are recorded in the mapping values
of M∗

𝑘
, each of which is a set Λ. Specifically, to generate

M∗
𝑘
, we first iterate through each Λ and check if there exists

an atomic translator 𝜆 that belongs to each Λ, indicating
the kind 𝑘 has only one sub-kind and M𝑘 is assigned as
[𝑡𝑟𝑢𝑒 → 𝜆]. Otherwise, we select the minimum number of
atomic translators that can cover all the mapping keys, i.e.,
all the encountered conjunctive predicates. For each selected
atomic translator, we perform a logical OR operation on the
conjunctive predicates it covers to remove the irrelevant
predicates and obtain the most accurate one.
For unseen conjunctive predicates, we perform a logical

OR operation on them and generate an if statement that

Siro: Empowering Version Compatibility in Intermediate Representations via Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

triggers a warning. When using our tool on an actual pro-
gram, if we encounter a new conjunctive predicate that is
not covered by any test case, it helps us identify the exact
location of the error quickly and prompts users to add a new
test case to address the issue.

4.4 Optimizing Strategies
A significant portion of the synthesis process is dominated by
validating per-test translators. However, we have observed
that many of these validations are redundant. To enhance
the performance of Siro, we have implemented three opti-
mizations to eliminate these redundancies.
Optimization I (Equivalence).We utilize the equivalences
found in the profile table to merge per-test translators that
have the same effect. First, if two instructions have the same
conjunctive predicate at runtime, indicating the same sub-
kind, we can always assign them with the same atomic trans-
lator during enumeration. Second, we noticed that some IR
getters are aliases of others. We can extend the profile table
to record the objects returned by IR getters and merge equiv-
alent translators based on the equivalence of these objects.
Optimization II (Memoization). SinceM∗ remembers the
encountered conjunctive predicates and the corresponding
refined candidates, we can utilize it during the enumeration
process to perform pruning. Specifically, when encountering
an instruction of kind 𝑘 in the test case, if its conjunctive
predicate 𝜎& exists as a key inM∗

𝑘
, we can efficiently perform

the enumeration by directly applyingM∗
𝑘
[𝜎&].

Optimization III (Test Case Order). Building upon op-
timization II, we discovered that placing simpler test cases
earlier helps refine candidates efficiently, allowing subse-
quent complex test cases to leverage optimization II with
M∗. To implement this optimization, we utilize a lightweight
heuristic by establishing a topological order based on the
kinds of instructions present in each test case.

5 Implementation
We implemented Siro on LLVM infrastructure and its IR,
which numerous IR-based software rely on [14, 52, 75, 80].
We leveraged LLVM’s C++ IR libraries as the materials of
IR translation, while the synthesizer for instruction transla-
tors was implemented in Python. Next, we discuss several
challenges we solved during implementation.
Programming with Two Versions. Notice that the ma-
terials of the IR translator include different versions of IR
libraries. In order to program with both versions simulta-
neously, we refactored the namespace of one version’s IR
library through simple string replacement.
Mapping between IR Instructions. To determine the cor-
responding source and target instruction types between ver-
sions, Siro automatically matches the type signature of in-
structions utilizing the IR libraries of two versions. In Fig. 4,
we use two symbols Branch_s and Branch_t to represent

the same instruction in different versions, but in actual im-
plementation, they share exactly the same type of signature.
Additionally, Siro would automatically report a new instruc-
tion to developers to handle when there is no match for an
instruction type.
Handling IR Value Dependence. Our translation algo-
rithm for IR is a one-pass traversal, where we need to handle
the dependencies between IR values, e.g., an operand of an
instruction may be another instruction or a function that
has not been translated yet. To handle this issue, we main-
tain a mapping to record the correspondence between the
values of two IR versions. If we encounter an operand that
has not been translated, a placeholder value in the target
version is generated. Once the translation for that operand
is completed, we replace all usages of the placeholder with
the actual translated result.
Speeding up Synthesis Process. We realized that sequen-
tially generating code and compiling executables for each
per-test translator would lead to lengthy build times. There-
fore, we have designed a wrapper function that accepts a list
of runtime parameters to specify the per-test translators to be
validated. This allows us to compile atomic translators only
once and dynamically enumerate per-test translators, sig-
nificantly increasing the efficiency. Further, we parallelized
the translator validation, observing no interdependencies
between them. This dramatically speeds up Siro.

6 Evaluation
We evaluated Siro by investigating three research questions.
• RQ1. Can Siro synthesize IR translators between different
IR versions?
• RQ2. How do the IR translators produced by Siro benefit
different program analysis tasks?
• RQ3. How does each counterpart of Siro benefit the over-
all performance of synthesis?
We conducted all experiments on a 64-bit machine with

a 20-core Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz and
256G of physical memory. When parallelizing the validation
process, the thread number was configured to be 40.

6.1 LLVM Version Upgrades
To illustrate the evolution of LLVM IR and guide our version
pair selection, we studied the version changes of LLVM IR
from 3.0 to 17.0, spanning a period of 12 years (2011 − 2023).
Specifically, we studied the three sources of incompatibili-
ties presented in § 3.1 by examining the release notes and
GitHub repository of different versions of LLVM IR. For text
incompatibility, we evaluated the changes in the implemen-
tation codes of LLVM’s bitcode parser and reader. For API
incompatibility, we monitored the changes in the C++ head-
ers related to LLVM IR, and importantly, we counted changes
in the implement codes of representative LLVM’s built-in
static analyses (alias, dependence, and dominance analyses).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zhang et al.

Period 1

Period 2

Figure 8. The overall upgrading trend of LLVM IR

For semantic incompatibility, we recorded the appearance
of new instructions in different versions.
Results. The study results are presented as follows. Over-
all, the text and API dimensions involved approximately
25 KLOC and 31 KLOC code changes, respectively. Mean-
while, the semantic dimension witnessed the birth of 8 new
instructions. Additionally, we use a cumulative line graph
in Fig. 8 to provide a more straightforward visualization of
LLVM IR’s upgrading trends. The X-axis represents the ma-
jor versions we analyzed1, while the Y-axis represents the
incremental changes of a specific dimension throughout the
overall evolution. More precisely, the percentage increase
on the Y-axis for each version is calculated by dividing the
number of updates (lines or instructions) for a single version
by the total number of updates for all versions, i.e., the con-
tribution of that version to the overall version changes. To
normalize the differences between various modules within a
dimension, such as the bitcode parser and reader, we calcu-
lated the percentage for each module, assigned them equal
weights, and then obtained the overall percentage. It can be
observed that, during the continuous evolution of LLVM IR,
there are two periods with relatively active growth. The first
period, from 3.6 to 5, witnessed significant updates across all
three dimensions. The second period, from 6 to 11, involved
substantial updates in the API and semantic dimensions.

6.2 RQ1: Effectiveness
To demonstrate the effectiveness of Siro as a synthesis-
powered framework, we attempt to develop IR translators
of diverse source-target version pairs. As shown in Tab. 3,
we have selected ten different source-target version pairs as
goals based on the study results. These pairs encompass vari-
ous scenarios. Pairs 1-6 represent a “long distance” of version
gaps, including the two growth periods. Pairs 7-9 concern
the relatively close versions, and the last pair handles the
translation from the low version to the high version.
InvolvedManual Efforts. By utilizing Siro, all ten IR trans-
lators were efficiently produced. This part specifically elu-
cidates how SIRO alleviated the burden of manual develop-
ment. During the experiment, we engaged a Ph.D. student
1Note that before LLVM 4, the decimal point of the version number denotes
the major version, such as 3.x

Table 3. Pairs of IR translator versions achieved by Siro

No. Source Version Target Version # Common Inst # New Inst #Atomic Trans (LOC) #Inst Trans (LOC)

1 12.0 3.6 58 7 71,900 783
2 13.0 3.6 58 7 74,240 783
3 14.0 3.6 58 7 73,100 780
4 15.0 3.6 58 7 80,293 781
5 17.0 3.6 58 7 80,293 781
6 17.0 3.0 57 8 76,248 768
7 3.6 3.0 57 1 76,212 768
8 5.0 4.0 63 0 72,086 843
9 17.0 12.0 65 0 84,730 875
10 3.6 12.0 58 0 73,460 785

with a background in C++ programming but no prior knowl-
edge of Siro’s internal design as a user of the system. Recall
that in Siro, a user needs to provide test cases to synthesize
common instruction translators and handle a few new in-
structions (§ 4.1). Overall, these tasks were completed by the
student within a span of ten days, with two hours dedicated
each day. For each version pair, Siro completed the synthesis
of common instruction translators within a timeframe of less
than three hours, based on the established test cases.
Altogether, a total of 68 test cases were employed with

Siro to achieve the correct synthesis of all the common in-
structions across all version pairs. These test cases were
primarily derived from two sources. Firstly, for simple in-
structions like arithmetic operations, small C test cases that
can be compiled into IR programs were written. Secondly, for
more intricate instructions, the official LLVM test suite [61]
proved to be a valuable resource. By searching over the test
suite, multiple test cases could be extracted at the level of
IR programs. In particular, 60 test cases were initially pro-
vided for the first version pair, and these test cases were
subsequently reused with minor textual modifications for
the remaining version pairs. Only for the eighth and ninth
pairs did the student introduce eight additional test cases to
cover the seven common instructions. Moreover, Siro played
a crucial role in assisting the student in identifying and re-
moving duplicated test cases by reporting whether specific
test cases have effectively pruned out some candidates.
Furthermore, through the interaction with Siro, the stu-

dent was able to contribute high-quality test cases. An il-
lustrative example is presented in Fig. 10. The user initially
writes a test case with execution oracle 42, i.e., the code con-
taining line 4 before the difference. However, this particular
case fails to refuse the two erroneous atomic translators de-
picted in Fig. 9. Compared with the correct implementation
(lines 7-13 in Fig. 4), AtomicBranch1 incorrectly translates
the second branch target, while AtomicBranch2 wrongly
interchanges the two branch targets. For AtomicBranch1,
The underlying reason is that the provided test case only
exercises the true branch. As for AtomicBranch2, it can be
combined with another atomic translator of compare instruc-
tion (icmp) which incorrectly swaps the operands, to pass
the provided test case. Upon observing the contradictions
among the remaining atomic translators, the user can refuse
the incorrect translators by providing an additional test case.
For instance, one approach could involve replacing line 4 of

Siro: Empowering Version Compatibility in Intermediate Representations via Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1 Branch_t AtomicBranch1(Branch_s inst) {
2 Value_s cond = inst.GetCond ();
3 Block_s b0 = inst.GetBlock (0);
4 Value_t condd = TranslateValue(cond);
5 Block_t bb0 = TranslateBlock(b0);
6 return Builder.CreateCondBr(condd , bb0 , bb0);
7 }
8 Branch_t AtomicBranch2(Branch_s inst) {
9 Value_s cond = inst.GetCond ();
10 Block_s b0 = inst.GetBlock (0);
11 Block_s b1 = inst.GetBlock (1);
12 Value_t condd = TranslateValue(cond);
13 Block_t bb0 = TranslateBlock(b0);
14 Block_t bb1 = TranslateBlock(b1);
15 return Builder.CreateCondBr(condd , bb1 , bb0);
16 }

Figure 9. Two incorrect atomic translators for conditional
branch instruction. The incorrect parts are highlighted in
yellow.

1 define i32 @main() {
2 entry:
3 ;...
4 - %cond = icmp eq i32 10, i32 10
5 + %cond = icmp eq i32 10, i32 20
6 br i1 %cond, %then, %else
7 then:
8 ret i32 42
9 else:
10 ret i32 41
11 }

Figure 10. An example of two test cases. The initial case
(before diff) can’t refuse the two incorrect candidates in Fig 9,
which can be pruned out by the enhanced test case (after
diff).

the initial test case with line 5 and accordingly updating the
execution oracle to 41.
The correctness of the instruction translators generated

by Siro was confirmed through our manual review process.
The last two columns of Tab. 3 present for each version pair,
the code size of the initially generated atomic translators
(column #Atomic Trans) and the final instruction transla-
tors (column #Inst Trans) in the synthesis procedure. The
review process for each instruction translator focused on
three aspects. Firstly, we ensured the correct identification
of predicates. Secondly, we examined the correctness of the
atomic translators under each predicate. Lastly, if multiple
atomic translators existed under a predicate, we assessed
their equivalence of implementation. For example, during
the review of the translator depicted in Fig. 11, we first con-
firmed the correctness of the predicates and subsequently
verified the correctness of the two atomic translators in lines
3-5 and 7-13. Finally, we determined that these two atomic
translators were equivalent to those depicted in Figure 4,

1 Branch_t TranslateBranch2(Branch_s inst) {
2 if(inst.IsUncondBr ()) {
3 Block_s b = inst. GetOperand(0) ;
4 Block_t bb = TranslateBlock(b);
5 return Builder.CreateBr(bb);
6 } else {
7 Value_s cond = inst.GetCond ();
8 Block_s b0 = inst. GetOperand(1) ;
9 Block_s b1 = inst. GetOperand(2) ;
10 Value_t condd = TranslateValue(cond);
11 Block_t bb0 = TranslateBlock(b0);
12 Block_t bb1 = TranslateBlock(b1);
13 return Builder.CreateCondBr(condd , bb0 , bb1);
14 } }

Figure 11. Another correct instruction translator for the
branch instruction. Compared with the one in Fig 4, it is
implemented using equivalent getter APIs highlighted in yel-
low. The type conversion operations are omitted for brevity.

(a)

15%

64%

16%
5%

[1-3] [4-10] [11-100] >100

72%

16%

10%

1 2 [3 - 6] >6

(b)

2%

Figure 12. The number distributions of the candidate and
refined atomic translators

where the API GetOperand() was found to be equivalent to
GetBlock() for retrieving the desired branch targets.
Synthesizing Common Instructions. We illustrate the
effectiveness of Siro using statistics regarding the atomic
translators. Fig. 12 displays the number distribution of candi-
dates and refined atomic translators for all common instruc-
tions between versions 12.0 and 3.6, i.e., the initial search
space and the final solution space. As shown in Fig. 12(a),
the search space remains far from trivial, even when using
type-guided synthesis to generate candidates. Only 15% of
the instructions have three or fewer candidates, while the
majority of instructions have four to ten candidates. Ad-
ditionally, a significant portion (21%) of instructions have
dozens or even hundreds of candidates. Moreover, consid-
ering the combination of instructions further amplifies the
complexity of the search space, leading to an even larger
space to explore.

Fig. 12(b) shows that after the synthesis, most instructions
(72%) remain one atomic translator, indicating the resulting
instruction translator has no predicates. For those instruc-
tions with more than one refined atomic translator, some

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zhang et al.

1 Invoke_t TranslateInvoke(Invoke_s inst) {
2 Function_s fun = inst.GetFunc();
3 Function_t func = TranslateFunction(fun);
4 + Type_s ty = fun.GetType();
5 + Type_t type = TranslateType(ty);
6 /*...*/

7 - return Builder.CreateInvoke(func, ...);

8 + return Builder.CreateInvoke(func, type, ...);
9 }

Figure 13. Variations of invoke instructor translator due to
API changes.

interesting findings are discovered: First, Siro identifies sub-
kinds for several instructions, such as branch, return, and
call. Their instruction translators utilize predicates to distin-
guish different atomic translators. Second, Siro has “found”
the commutative properties of some instructions. For ex-
ample, when handling arithmetic instructions like add and
mul, swapping their operands during translation results in
an equivalent instruction. Third, there are cases where an
instruction has multiple builders, and more than one of them
can be used to correctly construct the instruction. These
intriguing results are all automatically synthesized by Siro
using test cases, relieving users from the need to delve into
these implementation details.

Additionally, for the same instruction translator generated
by Siro, we have observed that its implementation differs
across different versions. For instance, since LLVM 9.0, the
builder of invoke instruction requires explicitly specifying
the type of the called function. Therefore, in version pairs
whose targets >= 9 (i.e., pairs 9-10), the translators resemble
the code before the difference in Fig. 13, otherwise they
resemble the code after the difference. This reflects how
program synthesis techniques have helped SIRO effectively
overcome API incompatibility in the IR libraries.
Handling New Instructions. We have dealt with eight
new instructions in pairs 1-7 using the principles in § 3.3.2.
Specifically, we found that five instructions are unnecessary
to process because they are related to error mechanisms
in Windows platform [64] and are never encountered in
Linux. Then, we applied analysis-preserving translations to
the remaining three instructions. For the callbr instruction
used to model possible jump targets in inline assembly, we
translated it into normal inline assembly along with a switch
statement to restore its control flow. For the freeze instruc-
tion used to prevent the propagation of a possible undefined
behavior value [51], we translated it into its operand value
to preserve the data flow. For the addrspacecast instruc-
tion introduced in LLVM 3.4, we translated it back into the
bitcast instruction in pair 7, which was the original way
of using it before LLVM 3.4. Pairs 8-10 don’t need any spe-
cial treatment for new instructions because either the two

versions are close or the higher version already includes all
the instructions of the lower version.

6.3 RQ2: Benefit to Program Analysis
To quantify the benefits and prospects of IR translation tech-
nique for IR-based software, we conducted comprehensive
experiments on three clients including static bug detection,
fuzzing, and kernel bug detection utilizing the IR translators
produced by Siro.
Static Bug Detection.We evaluated the value flow analy-
sis tool PINPOINT [82] developed on LLVM 3.6, under two
settings: one uses the compiling approach, i.e., Clang 3.6, to
obtain IR programs, the other uses the translating approach,
utilizing Clang 12.0 compiler and 12.0→ 3.6 translator pro-
duced by Siro. When running PINPOINT on several fun-
damental open-source projects, We choose four common
kinds of bugs, namely, null pointer dereference (NPD), use-
after-free (UAF), file descriptor leak (FDL), and memory leak
(ML). To determine whether a bug is reported under both
settings, we compare each step in the bug report trace by
the file name, line number, and descriptions.
Tab. 4 shows the comparison results of reported bugs

under two settings. Specifically, the columns new, miss,
and shared represent the number of bugs reported only by
translating approach, only by compiling approach, and by
both approaches. As shown in the table, 91% (=253/276) bugs
overlap when analyzing the two forms of LLVM 3.6 IR pro-
grams. Meanwhile, the translating and compiling approaches
independently identified 15 and 8 bugs, respectively. This pri-
marily stems from the fact that IR programs generated from
different compiler versions are distinct, enabling static ana-
lyzers to uncover different bugs. Similar findings have been
reported by several recent studies [55, 76]. These promising
results provide strong empirical evidence that the IR transla-
tion technique can help bug detectors overcome the version
trap and accurately identify bugs.
Fuzzing. To quantify the benefit to fuzzers, we choose a
recently popular fuzzing benchmarkMagma [40]. Our goal is
to trigger all 111 CVEs in the benchmark programs using the
executables compiled from the IR programs translated by our
12.0→ 3.6 translator. Particularly,Magma is built upon real-
world open-source projects and includes the inputs, known
as PoCs, that can trigger the crashes related to each specific
CVE. A single CVE can correspond to multiple PoCs.
As shown in Tab. 5, 95.89% (35299/33849) PoCs can be

reproduced, which triggers 85.39% (95/111) of all the CVEs
in the benchmark projects. For the test cases underlying
the project php, the IR translator succeeded in translating
it, but the compiler crashed during the backend code gen-
eration phase. The cause is that php hard-codes hardware
instructions in source code using inline assembly, and is only
supported by higher-version compiler backends. This goes
beyond the scope of what IR translation can handle. Overall,
the high success ratio of reproducing PoCs suggests that IR

Siro: Empowering Version Compatibility in Intermediate Representations via Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 4. Bugs reported by Pinpoint under two settings

Project NPD UAF FDL ML
new miss shared new miss shared new miss shared new miss shared

libcapstone 1 0 18 0 0 0 0 0 0 0 0 0
tmux 2 0 85 0 3 14 0 0 0 9 5 105
libssh 3 0 21 0 0 0 0 0 0 0 0 4
libuv 0 0 0 0 0 2 0 0 0 0 0 0
pbzip 0 0 0 0 0 0 0 0 0 0 0 0
libcjson 0 0 0 0 0 0 0 0 0 0 0 0

http-parser 0 0 0 0 0 0 0 0 0 0 0 0
pkg-config 0 0 3 0 0 0 0 0 1 0 0 0

Total 6 0 127 0 3 16 0 0 1 9 5 109

Table 5. Statistics of reproducing PoCs with Siro

Project #Targets #Insts #CVE #PoC #R-CVE #R-PoC CVE-Ratio PoC-Ratio

libpng 1 109,123 7 634 7 634 100.00% 100.00%
libtiff 2 557,882 14 3,716 14 3,709 100.00% 99.81%
libxml 2 2,076,676 15 19,731 15 19,731 100.00% 100.00%
poppler 3 3,786,354 19 7,343 19 7343 100.00% 100.00%
openssl 4 5,508,226 20 655 20 655 100.00% 100.00%
sqlite 1 692,561 20 1,777 20 1,777 100.00% 100.00%
php 1 2,470,023 16 1,443 0 0 0.00% 0.00%

Total - - 111 35,299 95 33,849 85.59% 95.89%

translation holds great promise for dynamic analysis such as
grey-box fuzzing, where static analysis on different versions
can collaborate to guide the fuzzing process.
Handling Linux Kernel. Finally, we applied IR translation
in the context of bug detection for the Linux kernel in real-
world scenarios, where the complexity of the Linux kernel
makes it impossible for the compiling approach to obtain a
complete IR program. Fortunately, through the utilization of
our 14.0→ 3.6 and 15.0→ 3.6 translators, we successfully
obtained the corresponding IR programs. This allowed us
to leverage existing value flow analysis techniques [82] and
function pointer analysis [67] to develop a similarity-based
kernel bug detector. Specifically, this tool utilizes existing
security patches in Linux drivers to reason about the root
causes of the bugs and detect potential similar bugs in other
drivers via value flow path searching. As a result, we were
able to identify and confirm the presence of 80 previously
unknown bugs. Moreover, all of them have been confirmed
by kernel developers and 56 of them have been fixed and
merged by our patches. This notable achievement showcases
how IR translation has practically aided researchers in tack-
ling the IR version trap.

6.4 RQ3: Performance
To demonstrate how our technical design improves the syn-
thesis performance of Siro, we analyzed the overall time
breakdown and conducted an ablation study on a version
pair (13.0→ 3.6) utilizing the 60 test cases we gathered.
Time Breakdown. Overall, it took 2.91 hours to complete
the synthesis. During this time, 90.7% was spent on the vali-
dation of per-test translators, while the remaining time was
divided into 0.12 hours for enumeration and 0.15 hours for
refinement and skeleton completion. This is thanks to imple-
menting the per-test translators as a wrapper function, which

significantly reduces the compilation time during enumera-
tion, enabling us to allocate more computational resources
to validation. In particular, within the validation process,
only 0.19 hours were spent on running test cases to check
the execution results. This reveals that the success or failure
of translation and compilation also plays a crucial role in
ensuring correctness, helping us reject a significant number
of erroneous per-test translators at an early stage.
Ablation Study.We conducted three experiments to shed
more light on the operation of Siro. First, we attempted to
not use per-test translators by enumerating all possible trans-
lators for each instruction together. However, even without
considering predicates, the number of combinations reached
1040, leaving no chances for synthesis. Second, we disabled
optimizations I and II discussed in § 4.4. Unfortunately, the
synthesis process got timeout after 24 hours, stuck on a
test case with 13,000,000 per-test translators waiting to be
validated. This reflects the importance of our designed opti-
mization, especially in applying the memorized knowledge
in M∗ immediately after refinement. Third, we compared
optimization III in § 4.4 with five randomly generated order
sequences. Consequently, three sequences got timeout after
24 hours and two sequences succeeded in 5.06 hours and
8.23 hours, proving that our order strategy can effectively
reduce redundant validations.

7 Discussion
Limitations of Proposed Approach. Siro utilizes program
synthesis to automatically generate translators for common
instructions in different versions. The underlying assump-
tion is that there exists a significant amount of one-to-one
mapping in the version trap scenario. However, if the synthe-
sis goal is to find translators between IRs (e.g., for different
languages) [5, 29], Siro cannot be directly adopted. In such
cases, the form of translation needs to be extended to support
one-to-many or many-to-many mappings. Nonetheless, the
insights in the algorithmic skeleton and the per-test transla-
tor we proposed are still applicable.

Siro reduces most of the laborious work for developers by
extracting the version-agnostic skeleton and synthesizing
common instructions. However, developers still need to col-
lect test cases for common instructions andwrite translations
for new instructions. In the pursuit of fully automating IR
translations, we have identified two challenging directions
for future researchers. First, existing test program gener-
ation techniques [11, 57, 90] face difficulties in achieving
diversity in IR instructions. Second, it is worth exploring the
extraction of IR semantics (via techniques such as symbolic
execution [9] and translation validation [65]) to assist in
automatically handling translations for new instructions.
Generalizability of Siro. While Siro is instantiated on
LLVM IR, our proposed method can be generalized to en-
hance the version compatibility of other IRs as well. When

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zhang et al.

handling a new IR, one can start by identifying the five types
of IR libraries mentioned in Tab. 2 within this IR ecosystem.
Subsequently, the corresponding version-agnostic transla-
tion skeleton can be achieved based on a specific IR struc-
ture, e.g., the control flow graph. In addition, following the
approach outlined in § 4, the synthesis system can be es-
tablished. From the perspective of data structures, SIRO
first divides and conquers complex structures, leaving struc-
turally simple but content-rich data to program synthesis.
This principle is also applicable to the synthesis of other data
structures, such as network protocols and serialization data
formats.
Suggestions to Developers. To avoid falling into the IR
version trap, developers of IR-based software can consider
the following approaches. First, reducing the coupling be-
tween program analysis and the underlying IRs would be
advantageous. This can be achieved by either introducing a
generic interface to abstract the IR [20, 21, 85], or decompos-
ing a program analysis algorithm into generic interfaces for
specific IRs to achieve [39, 83]. Second, it is crucial to have a
regression test suite [38, 77] for a program analysis tool, as all
three approaches, i.e., upgrading, compiling, and translating,
we discussed can leverage this test suite effectively.

A positive example is the efforts of the OCaml community
in ppxlib [70]. This library strives to maintain a version-
independent IR and unifies different versions of the OCaml
front-end IR onto that IR. Additionally, it provides a set of
version-stable APIs for developers to implement their static
analyzers and rewriters. With these two layers of abstrac-
tion, the main burden of version maintenance falls on the
developers of ppxlib, while the developers of downstream
applications can enjoy great version compatibility. Further-
more, the subsequent extension of LLVM, MLIR [24, 49],
holds similar potential. MLIR introduces the concept of di-
alects, allowing the presence of various abstraction levels
within the IR, which then allows static analysis to manip-
ulate the underlying IR in a generic programming fashion
and focus on specific characteristics.

8 Related Work
IR and IR-based Software. Bridging the source code and
binary executables, Intermediate Representation (IR) is a mid-
level program abstraction produced by compilers [15]. The
emergence of IRs has spawned plenty of IR-based software
to analyze [9, 23] and transform [1, 27] programs. To ease
the manipulation of code, researchers have designed various
IR structures that highlight different program relationships.
The most typical ones include abstract syntax tree [6] for
syntactic scoping, control flow graphs [19, 32] for execution
order, static single assignment [7, 18, 84] for variable def-use
relation, and dependence graphs [16, 26, 69, 82] for data and
control dependence.

Considering the evolution of IRs over versions hurts the
usability of IR-based software, Siro is proposed to resolve
the version compatibility issues. In Siro, the translation al-
gorithm related to IR structures is settled into our skeleton
(§ 3.2), allowing us to concentrate on handling the diverse
IR instructions. This method ensures the generality across
various IR structures.
Program Transformation. Program transformation modi-
fies a given program to enhance its portability, performance,
and readability, which includes program migration [81], ver-
sion upgrade [2, 79], and even program optimization [47, 86].
According to technical designs, previous studies can be di-
vided into three categories. The first line leverages predefined
rules to achieve the transformations, such as converting im-
perative code to functional code [37], and translating concur-
rent C code to rust code for safety [41]. The second category
takes the program facts obtained by static [87] or dynamic
analysis [68, 81] as the semantic restriction and synthesizes a
new program preserving the semantic equivalence. The third
body of the literature adopts the NLP techniques, such as
translating Python between versions [2], and transforming
the instructions targeting different architectures [88].

Specifically, Siro is a framework for transforming between
different IR versions. It encompasses the first two techniques,
where we employ one-to-many rules to translate new in-
structions and we leverage the dynamic execution results to
effectively synthesize common instruction translators. Addi-
tionally, it would also be promising to adopt new advances,
such as the large language model [8, 71] to resolve the ver-
sion upgrade problem, which could enhance Siro to achieve
semantic-equivalent translation.
Component-based Program Synthesis. From a technical
perspective, our work is an instance of component-based
program synthesis [33, 43]. Generally, the synthesizers com-
pose several components, such as classes and methods in the
libraries, to achieve desired functionalities, which are mostly
specified by input-output examples [25, 46]. To prune search
space, existing techniques often leverage the type signatures
to narrow down the possible combinations of library function
calls [35, 36, 72]. For example, SyPet [25] encodes the type
signature of each library function with a Petri net, and at-
tempts to enumerate well-typed Java programs passing given
test cases based on the reachable paths of the Petri net. Other
efforts such as APIphany [34] and Hoogle+ [43] follow a
similar spirit to SyPet, concentrating the component-based
synthesis in different real-world scenarios.
In Siro, we utilize the type signatures of IR builder and

getter APIs to generate candidate atomic translators (§ 4.2),
sharing the spirit of component-based synthesis. However,
it is specifically our decomposition of the translation algo-
rithm that enables atomic translators to be viable clients of
component-based synthesis. Moreover, our contribution to
synthesis is also reflected in the novel validation approach
through the per-test translators (§ 4.3). In previous works,

Siro: Empowering Version Compatibility in Intermediate Representations via Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

each test case is used to validate one task individually. But in
Siro, the correctness of each instruction translator cannot
be validated independently and each test case is used to vali-
date multiple instruction translators as well. Lastly, the three
optimization strategies we propose greatly improve the per-
formance (§ 4.4). Without the collaboration between these
technical designs, the program synthesis technique cannot
be practically adopted in the scenarios of IR translation.

9 Conclusion
We have presented Siro, the first synthesis-powered frame-
work to efficiently generate IR translators, thereby enhanc-
ing IR version compatibility. Siro employs a divide-and-
conquer approach to establish an algorithmic skeleton and
leverages type-guided generation and test case-guided re-
finement to automatically synthesize IR instruction transla-
tors. Our experiments show that Siro can generate multiple
well-functional IR translators, effectively supporting static
analyzers and fuzzers to find bugs in real-world programs
such as the Linux kernel. We believe that Siro can make
program analysis techniques more practical by assisting the
developers in escaping the IR version trap.

Acknowledgments
We would like to acknowledge and thank the anonymous
reviewers and our paper shepherd, Prof. Lulian Neamtiu, for
providing constructive suggestions and insightful feedback.
This work is suppported by ITS/440/18FP grant from the
Hong Kong Innovation and Technology Commission, Na-
tional Natural Science Foundation of China under Grant No.
62302434, and research grants from Huawei, Microsoft, and
TCL. Wei Chen is the corresponding author.

References
[1] AFL. American fuzzy lop. https://lcamtuf.coredump.cx/afl/, 2022.
[2] Karan Aggarwal, Mohammad Salameh, and Abram Hindle. Using

machine translation for converting python 2 to python 3 code. PeerJ
Prepr., 3:e1459, 2015.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
techniques, and tools. In Addison-Wesley series in computer science /
World student series edition, 1986.

[4] Domagoj Babic and Alan J. Hu. Calysto: Scalable and precise extended
static checking. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, page 211–220, New York, NY, USA,
2008. Association for Computing Machinery.

[5] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monper-
rus. Dexpler: Converting android dalvik bytecode to jimple for static
analysis with soot. In Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program Analysis, SOAP ’12, page
27–38, New York, NY, USA, 2012. Association for Computing Machin-
ery.

[6] Ira D. Baxter, Andrew Yahin, Leonardo Mendonça de Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using abstract syntax
trees. Proceedings. International Conference on Software Maintenance
(Cat. No. 98CB36272), pages 368–377, 1998.

[7] Benoit Boissinot, Philip Brisk, Alain Darte, and Fabrice Rastello. Ssi
properties revisited. ACM Trans. Embed. Comput. Syst., 11S(1), jun

2012.
[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, page 209–224, USA, 2008.
USENIX Association.

[10] Yuandao Cai and Charles Zhang. A cocktail approach to practical call
graph construction. Proc. ACM Program. Lang., 7(OOPSLA2), oct 2023.

[11] Stefanos Chaliasos, Thodoris Sotiropoulos, Diomidis Spinellis, Arthur
Gervais, Benjamin Livshits, and Dimitris Mitropoulos. Finding typing
compiler bugs. In Proceedings of the 43rd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementa-
tion, PLDI 2022, page 183–198, New York, NY, USA, 2022. Association
for Computing Machinery.

[12] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled
search. In 2018 IEEE Symposium on Security and Privacy (SP), pages
711–725, 2018.

[13] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: Fuzzing deeply
nested branches. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, page 499–513,
New York, NY, USA, 2019. Association for Computing Machinery.

[14] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e:
A platform for in-vivo multi-path analysis of software systems. Acm
Sigplan Notices, 46(3):265–278, 2011.

[15] Fred Chow. Intermediate representation: The increasing significance
of intermediate representations in compilers. Queue, 11(10):30–37, oct
2013.

[16] Cliff Click and Michael H. Paleczny. A simple graph-based interme-
diate representation. In ACM SIGPLAN Workshop on Intermediate
Representations, 1995.

[17] James Cordy. The txl source transformation language. Science of
Computer Programming, 61:190–210, 08 2006.

[18] Ronald Gary Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Trans. Program.
Lang. Syst., 13:451–490, 1991.

[19] Brian Davis, Andrew Beatty, Kevin Casey, David Gregg, and John
Waldron. The case for virtual register machines. In Proceedings of the
2003 Workshop on Interpreters, Virtual Machines and Emulators, IVME
’03, page 41–49, New York, NY, USA, 2003. Association for Computing
Machinery.

[20] Premkumar T. Devanbu. Genoa: A customizable language- and front-
end independent code analyzer. In Proceedings of the 14th International
Conference on Software Engineering, ICSE ’92, page 307–317, New York,
NY, USA, 1992. Association for Computing Machinery.

[21] Premkumar T. Devanbu, David S. Rosenblum, and Alexander L. Wolf.
Automated construction of testing and analysis tools. In Proceedings
of the 16th International Conference on Software Engineering, ICSE ’94,
page 241–250, Washington, DC, USA, 1994. IEEE Computer Society
Press.

[22] Zhengjie Du, Yuekang Li, Yang Liu, and Bing Mao. Windranger: A
directed greybox fuzzer driven by deviation basic blocks. In Proceedings

https://lcamtuf.coredump.cx/afl/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zhang et al.

of the 44th International Conference on Software Engineering, ICSE ’22,
page 2440–2451, New York, NY, USA, 2022. Association for Computing
Machinery.

[23] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and
Charles Zhang. Smoke: Scalable path-sensitive memory leak detec-
tion for millions of lines of code. 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 72–82, 2019.

[24] Mathieu Fehr, Jeff Niu, River Riddle, Mehdi Amini, Zhendong Su,
and Tobias Grosser. Irdl: An ir definition language for ssa compilers.
In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2022,
page 199–212, New York, NY, USA, 2022. Association for Computing
Machinery.

[25] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.
Reps. Component-based synthesis for complex apis. In Giuseppe
Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 599–612. ACM, 2017.

[26] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Program.
Lang. Syst., 9(3):319–349, jul 1987.

[27] Andrea Fioraldi, Dominik Christian Maier, Heiko Eißfeldt, and Marc
Heuse. AFL++ : Combining incremental steps of fuzzing research. In
Yuval Yarom and Sarah Zennou, editors, 14th USENIX Workshop on Of-
fensive Technologies, WOOT 2020, August 11, 2020. USENIX Association,
2020.

[28] Firefox. Firefox’s building requirement on clang-11. https://firefox-
source-docs.mozilla.org/build/buildsystem/toolchains.html, 2023.

[29] Jack Garzella, Marek Baranowski, ShaoboHe, and Zvonimir Rakamaric.
Leveraging compiler intermediate representation for multi- and cross-
language verification. In Dirk Beyer and Damien Zufferey, editors,
Proceedings of the 21st International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI), volume 11990 of Lecture
Notes in Computer Science, pages 90–111. Springer, 2020.

[30] GCC. Gcc backward compatibility. https://gcc.gnu.org/onlinedocs/
libstdc++/manual/backwards.html, 2022.

[31] GCC. Gcc, the gnu compiler collection. https://gcc.gnu.org/, 2023.
[32] James Gosling. Java intermediate bytecodes: Acm sigplan workshop

on intermediate representations (ir’95). SIGPLAN Not., 30(3):111–118,
mar 1995.

[33] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Synthe-
sizing geometry constructions. In Mary W. Hall and David A. Padua,
editors, Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011, pages 50–61. ACM, 2011.

[34] Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger,
and Nadia Polikarpova. Type-directed program synthesis for restful
apis. In PLDI ’22: 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, pages 122–136. ACM, 2022.

[35] Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang,
Ranjit Jhala, and Nadia Polikarpova. Program synthesis by type-guided
abstraction refinement. Proc. ACM Program. Lang., 4(POPL):12:1–12:28,
2020.

[36] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Com-
plete completion using types and weights. In Hans-Juergen Boehm
and Cormac Flanagan, editors, ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013, pages 27–38. ACM, 2013.

[37] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. Crossing the
gap from imperative to functional programming through refactoring.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, page 543–553, New York, NY, USA, 2013.
Association for Computing Machinery.

[38] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessan-
dro Orso, Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and
Ashish Gujarathi. Regression test selection for java software. In
Proceedings of the 16th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA ’01, page
312–326, New York, NY, USA, 2001. Association for Computing Ma-
chinery.

[39] James Hayes, William G. Griswold, and Stuart Moskovics. Component
design of retargetable program analysis tools that reuse intermediate
representations. In Proceedings of the 22nd International Conference
on Software Engineering, ICSE ’00, page 356–365, New York, NY, USA,
2000. Association for Computing Machinery.

[40] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A
ground-truth fuzzing benchmark. In Longbo Huang, Anshul Gandhi,
Negar Kiyavash, and Jia Wang, editors, SIGMETRICS ’21: ACM SIG-
METRICS / International Conference on Measurement and Modeling of
Computer Systems, Virtual Event, China, June 14-18, 2021, pages 81–82.
ACM, 2021.

[41] Jaemin Hong and Sukyoung Ryu. Concrat: An automatic c-to-rust
lock API translator for concurrent programs. CoRR, abs/2301.10943,
2023.

[42] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu,
and Charles Zhang. Beacon: Directed grey-box fuzzing with provable
path pruning. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 36–50, 2022.

[43] Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg,
Ranjit Jhala, and Nadia Polikarpova. Digging for fold: synthesis-aided
API discovery for haskell. Proc. ACMProgram. Lang., 4(OOPSLA):205:1–
205:27, 2020.

[44] JDK. Jdk backward compatibility. https://blogs.oracle.com/java/post/

upgrading-major-java-versions, 2022.
[45] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung

Lee, and Insik Shin. Razzer: Finding kernel race bugs through fuzzing.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 754–768,
2019.

[46] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages 215–224.
ACM, 2010.

[47] Timotej Kapus, Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky,
and Cristian Cadar. Computing summaries of string loops in C for
better testing and refactoring. In Kathryn S. McKinley and Kathleen
Fisher, editors, Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, Phoenix,
AZ, USA, June 22-26, 2019, pages 874–888. ACM, 2019.

[48] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik
Shin, and Byoungyoung Lee. Hfl: Hybrid fuzzing on the linux kernel.
In NDSS, 2020.

[49] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. Mlir: Scaling compiler infrastructure
for domain specific computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 2–14,
2021.

[50] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via
equivalence modulo inputs. In Michael F. P. O’Boyle and Keshav
Pingali, editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, pages 216–226. ACM, 2014.

[51] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy
Das, David Majnemer, John Regehr, and Nuno P. Lopes. Taming unde-
fined behavior in llvm. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2017,

https://firefox-source-docs.mozilla.org/build/buildsystem/toolchains.html
https://firefox-source-docs.mozilla.org/build/buildsystem/toolchains.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/backwards.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/backwards.html
https://gcc.gnu.org/
https://blogs.oracle.com/java/post/upgrading-major-java-versions
https://blogs.oracle.com/java/post/upgrading-major-java-versions

Siro: Empowering Version Compatibility in Intermediate Representations via Program Synthesis ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

page 633–647, New York, NY, USA, 2017. Association for Computing
Machinery.

[52] Guilherme Vieira Leobas and Fernando Magno Quintão Pereira. Semir-
ing optimizations: dynamic elision of expressions with identity and
absorbing elements. Proceedings of the ACM on Programming Lan-
guages, 4(OOPSLA):1–28, 2020.

[53] Shaohua Li and Zhendong Su. Finding unstable code via compiler-
driven differential testing. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS 2023, page 238–251, New York,
NY, USA, 2023. Association for Computing Machinery.

[54] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. A principled
approach to selective context sensitivity for pointer analysis. ACM
Trans. Program. Lang. Syst., 42(2), may 2020.

[55] Zongjie Li, Pingchuan Ma, Huaijin Wang, Shuai Wang, Qiyi Tang,
Sen Nie, and Shi Wu. Unleashing the power of compiler intermediate
representation to enhance neural program embeddings. In Proceedings
of the 44th International Conference on Software Engineering, ICSE ’22,
page 2253–2265, New York, NY, USA, 2022. Association for Computing
Machinery.

[56] Linux. Linux kernel’s building requirement on clang-11. https://www.
kernel.org/doc/html/latest/process/changes.html, 2023.

[57] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing
for c and c++ compilers with yarpgen. Proc. ACM Program. Lang.,
4(OOPSLA), nov 2020.

[58] LLVM. Proposal of llvm-upgrader. https://releases.llvm.org/2.0/docs/

CommandGuide/html/llvm-upgrade.html, 2007.
[59] LLVM. Llvm backward compatibility. https://llvm.org/docs/

DeveloperPolicy.html#ir-backwards-compatibility, 2022.
[60] LLVM. The llvm compiler infrastructure. https://llvm.org/, 2023.
[61] LLVM. Llvm test guide. https://llvm.org/docs/TestingGuide.html, 2023.
[62] LLVM. Llvm’s building requirement on clang-5. https://llvm.org/docs/

GettingStarted.html, 2023.
[63] llvm dev. Llvm bc converter from llvm 3.9 to llvm 3.1, 2016.
[64] llvm dev. Llvm error handling mechanism, 2023.
[65] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and

John Regehr. Alive2: Bounded translation validation for llvm. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2021, page
65–79, New York, NY, USA, 2021. Association for Computing Machin-
ery.

[66] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. Practical verification of peephole optimizations with alive.
Commun. ACM, 61(2):84–91, jan 2018.

[67] Kangjie Lu and Hong Hu. Where does it go? refining indirect-call
targets with multi-layer type analysis. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19,
page 1867–1881, New York, NY, USA, 2019. Association for Computing
Machinery.

[68] Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Işil Dillig.
Automated transpilation of imperative to functional code using neural-
guided program synthesis. Proc. ACM Program. Lang., 6(OOPSLA1),
apr 2022.

[69] I. A. Natour. On the control dependence in the program dependence
graph. In Proceedings of the 1988 ACM Sixteenth Annual Conference on
Computer Science, CSC ’88, page 510–519, New York, NY, USA, 1988.
Association for Computing Machinery.

[70] OCaml. ppxlib: Base library and tools for ppx rewriters, 2024.
[71] LongOuyang, JeffWu, Xu Jiang, DiogoAlmeida, Carroll L.Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama,
Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training languagemodels to follow instructions
with human feedback. CoRR, abs/2203.02155, 2022.

[72] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman.
Type-directed completion of partial expressions. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’12, Beijing, China - June 11 - 16, 2012, pages 275–286. ACM, 2012.

[73] QT. Qt-5.12’s building requirement on clang-7. https://doc.qt.io/

archives/qt-5.12/supported-platforms.html, 2023.
[74] R8. R8 compiler for java. https://r8.googlesource.com/r8/+/refs/heads/

main/README.md, 2022.
[75] Zvonimir Rakamarić and Michael Emmi. Smack: Decoupling source

language details from verifier implementations. In Computer Aided
Verification: 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings 26, pages 106–113. Springer, 2014.

[76] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. Unleashing
the hidden power of compiler optimization on binary code differ-
ence: An empirical study. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Im-
plementation, PLDI 2021, page 142–157, New York, NY, USA, 2021.
Association for Computing Machinery.

[77] G. Rothermel and M.J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering, 22(8):529–551,
1996.

[78] Rust. A pull request about upgrading llvm in rust project. https:

//github.com/rust-lang/rust/pull/34743, 2016.
[79] Malavika Samak, Deokhwan Kim, and Martin C. Rinard. Synthesizing

replacement classes. Proc. ACM Program. Lang., 4(POPL):52:1–52:33,
2020.

[80] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. Phasar: An
inter-procedural static analysis framework for c/c++. In International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 393–410. Springer, 2019.

[81] Jiasi Shen and Martin C. Rinard. Using active learning to synthesize
models of applications that access databases. In Kathryn S. McKinley
and Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019, pages 269–285. ACM, 2019.

[82] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and
Charles Zhang. Pinpoint: Fast and precise sparse value flow analysis
for million lines of code. In Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
2018, page 693–706, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[83] Michelle Mills Strout, John Mellor-Crummey, and Paul Hovland.
Representation-independent program analysis. In Proceedings of the
6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Soft-
ware Tools and Engineering, PASTE ’05, page 67–74, New York, NY,
USA, 2005. Association for Computing Machinery.

[84] Yulei Sui and Jingling Xue. Svf: Interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th International Conference on
Compiler Construction, CC 2016, page 265–266, New York, NY, USA,
2016. Association for Computing Machinery.

[85] Gil Teixeira, João Bispo, and Filipe F. Correia. Multi-language static
code analysis on the lara framework. In Proceedings of the 10th ACM
SIGPLAN International Workshop on the State Of the Art in Program
Analysis, SOAP 2021, page 31–36, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

[86] Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen,
Jiasi Shen, and Martin C. Rinard. Supply-chain vulnerability elimina-
tion via active learning and regeneration. In Yongdae Kim, Jong Kim,
Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021, pages 1755–1770. ACM, 2021.

[87] Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and
Charles Zhang. Complexity-guided container replacement synthesis.

https://www.kernel.org/doc/html/latest/process/changes.html
https://www.kernel.org/doc/html/latest/process/changes.html
https://releases.llvm.org/2.0/docs/CommandGuide/html/llvm-upgrade.html
https://releases.llvm.org/2.0/docs/CommandGuide/html/llvm-upgrade.html
https://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility
https://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility
https://llvm.org/
https://llvm.org/docs/TestingGuide.html
https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/GettingStarted.html
https://doc.qt.io/archives/qt-5.12/supported-platforms.html
https://doc.qt.io/archives/qt-5.12/supported-platforms.html
https://r8.googlesource.com/r8/+/refs/heads/main/README.md
https://r8.googlesource.com/r8/+/refs/heads/main/README.md
https://github.com/rust-lang/rust/pull/34743
https://github.com/rust-lang/rust/pull/34743

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Zhang et al.

Proc. ACM Program. Lang., 6(OOPSLA1), apr 2022.
[88] Wenwen Wang, Stephen McCamant, Antonia Zhai, and Pen-Chung

Yew. Enhancing cross-isa DBT through automatically learned trans-
lation rules. In Xipeng Shen, James Tuck, Ricardo Bianchini, and
Vivek Sarkar, editors, Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28,
2018, pages 84–97. ACM, 2018.

[89] Yichen Xie and Alexander Aiken. Scalable error detection using
boolean satisfiability. In Jens Palsberg and Martín Abadi, editors,
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2005, Long Beach, California,

USA, January 12-14, 2005, pages 351–363. ACM, 2005.
[90] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and

understanding bugs in c compilers. SIGPLAN Not., 46(6):283–294, jun
2011.

[91] Xiaolan Zhang, Larry Koved, Marco Pistoia, Sam Weber, Trent Jaeger,
Guillaume Marceau, and Liangzhao Zeng. The case for analysis pre-
serving language transformation. In Proceedings of the 2006 Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’06, page
191–202, New York, NY, USA, 2006. Association for Computing Ma-
chinery.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The IR Version Trap
	2.2 Escaping from IR Version Trap

	3 IR Translation Essentials
	3.1 Demystifying the IR Version Trap
	3.2 Translation Skeleton
	3.3 Guidance to Instruction Translators

	4 Instruction Translator Synthesis
	4.1 System Design
	4.2 Type-guided Generation
	4.3 Test-guided Synthesis
	4.4 Optimizing Strategies

	5 Implementation
	6 Evaluation
	6.1 LLVM Version Upgrades
	6.2 RQ1: Effectiveness
	6.3 RQ2: Benefit to Program Analysis
	6.4 RQ3: Performance

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

