
DCLINK: Bridging Data Constraint Changes and
Implementations in FinTech Systems

Wensheng Tang ∗†, Chengpeng Wang ∗†, Peisen Yao ‡, Rongxin Wu §,
Xianjin Fu ¶, Gang Fan ¶, and Charles Zhang ∗

∗The Hong Kong University of Science and Technology, Hong Kong, China
{wtangae, cwangch, charlesz}@cse.ust.hk

‡Zhejiang University, China pyaoaa@zju.edu.cn
§Xiamen University, China wurongxin@xmu.edu.cn

¶Ant Group, China {fuxianjin.fxj, fangang}@antgroup.com

Abstract—A FinTech system is a cluster of FinTech applica-
tions that intensively interact with databases containing a large
quantity of user data. To ensure data consistency, it is a common
practice to specify data constraints to validate data at runtime.
However, data constraints often evolve according to changes in
business requirements. Meanwhile, the developers can hardly
keep up with the latest requirements during the development
cycle. Such an information barrier increases the communication
burden and prevents FinTech applications from being updated
in time, impeding the development cycle significantly.

In this paper, we present a comprehensive empirical study
on data constraints in FinTech systems, investigating how they
evolve and affect the development process. Our results show
that developers find it hard to update their code timely because
no mapping from data constraint changes to code is provided.
Inspired by the findings from code updates respecting data
constraint changes, we propose DCLINK, a traceability link
analysis for linking each data constraint change to target methods
demanding the code update in the FinTech application. We
extensively evaluate DCLINK upon real-world change cases in
Ant Group. The results show that DCLINK can effectively and
efficiently localize the target methods.

Index Terms—static analysis, impact analysis, data constraint,
FinTech application

I. INTRODUCTION

FinTech systems, e.g., e-payment services Paypal and
Stripe, serve on a daily basis for ordinary people. These
systems have also been increasingly prevalent in the software
industry. Typically, a FinTech system comprises multiple mi-
croservices and cloud databases. The core business logic relies
on frequent interactions that involve reading and updating
database records. Since these records contain a lot of sensitive
data, e.g., user balance, ensuring data consistency is one
of the most critical concerns in developing and maintaining
FinTech systems. For example, Amazon store processed 288
billion transactions using 5,326 database instances of Amazon
Aurora, stored 1,849 terabytes of data, and transferred 749
terabytes of data on Prime Day 2022 [1]. Any erroneous data
value can affect the system’s robustness and even introduce
enormous economic loss [2].

†
The first two authors contributed equally to this work and are sorted in

alphabetical order.

To ensure data consistency, FinTech system managers spec-
ify target properties of data values in the database tables
as data constraints, which constrain the data value in the
databases at runtime. Specifically, to create these constraints,
the managers summarize business requirements, list target
properties, and write data constraints in a domain-specific
language. When a data constraint is violated, error alarms
notify the managers and developers, guiding them to take
immediate reactions.

Due to constant changes in business requirements, the
managers have to update the corresponding data constraints,
and meanwhile, the developers are expected to refine their
implementations to fit the changed requirements. Delayed up-
dates would impede the development cycle and even postpone
the testing and deployment to the brink. Unfortunately, there
are no systematic studies on understanding the difficulties and
challenges in bridging data constraints and implementations
and no mature tools to assist developers. Thus, in this work,
we conducted a large-scale study of 5,906 data constraints of
a FinTech system and their relevant developers in Ant Group,
a global FinTech company. The study aims to explore the
following three research questions.

• RQ1: Is keeping up with data constraint changes for code
updates difficult?

• RQ2: How does a data constraint change in an evolving
FinTech system?

• RQ3: How does the application code change when a data
constraint changes?

Through developer interviews and analysis of different
versions of data constraints and application code, we have
uncovered several significant implications. First, we find that
most (73.9%) of the interviewees admitted that they had
encountered difficulties when making corresponding imple-
mentation updates, of which the majority (76.5%) thought
mapping data constraint changes to code is the key obstacle.
Second, data constraints are often modified by adding or
deleting a clause, which takes up 52.02% of the total change
cases. Third, there is a particular class of field variables in the
application, namely anchored field variables, which indicates
the correspondence between the data constraint change and

https://orcid.org/0000-0002-4259-3321
https://orcid.org/0000-0003-0617-5322
https://orcid.org/0000-0003-0342-9518
https://orcid.org/0000-0003-4581-7754
https://orcid.org/0009-0007-4395-599X
https://orcid.org/0000-0002-8633-6036
https://orcid.org/0000-0001-6417-1034

code updates effectively.

Based on the findings, we realize that it is essential and
feasible to bridge data constraint changes and implementa-
tions. While there have been several studies in analyzing
data constraints [3], [4] in other domains, their approaches
are not applicable to our problem. Several studies focus on
building the links between the data constraints and the bug
reports [4]. The other takes natural language descriptions of
data constraints as the inputs for the mapping [3]. Adapting
these approaches to the data constraints described in a domain-
specific language (DSL) requires substantial manual efforts in
writing descriptions. Test-to-code traceability studies are also
relevant to our work. They leverage naming similarities, like
naming conventions [5] or string distance [6], to build linkage
to the implementations [7]. However, none of them consider
the impacts of the data constraint changes on building the links
to the code implementation, thus causing missing leakage.

Inspired by the empirical findings, we propose DCLINK,
a traceability link analysis that automatically infers the code
implementations demanding modifications according to data
constraint changes. Our technique targets inferring the method
level implementation, since methods are commonly used in
unit testing and helpful for debugging [8]–[10]. To overcome
the limitation of existing studies, DCLINK is aware of the
change patterns of data constraints and localizes the target
methods following the change patterns accordingly. First, we
determine the program field variables related to the data
constraint change as the anchored field variables. Second,
we collect the impacted methods whose statements use the
anchored field variables. Third, we aggregate all the methods
and prioritize them based on a heuristic policy, returning an
ordered list of methods to developers for code updates.

We evaluate DCLINK using 75 cases of data constraint
changes among five crucial and most actively-developed Fin-
Tech applications in Ant Group. By comparing the methods in
the returned list with the ground-truth target method labeled by
developers, we determine if each target method is included in
the Top K functions for each case. The experimental results
show that the Hit@10 and Hit@20 values of DCLINK are
76.00% and 93.33%, respectively. Besides, DCLINK finished
analyzing each case efficiently, taking only 30.35 seconds on
average, which demonstrates its practical use in real industrial
scenarios. Overall, our work makes three major contributions:

• We conduct the first large-scale study of data constraints
in FinTech systems, which demonstrates the necessity of
bridging data constraint changes and implementations.

• We introduce the traceability link analysis DCLINK for
localizing the target methods that demand modifications
based on data constraint changes, providing suggestions
for the developers in FinTech application maintenance.

• We evaluate DCLINK on real-world FinTech applications
and demonstrate its effectiveness and efficiency in devel-
opment assistance. DCLINK has been deployed in the
production line of Ant Group.

DR Platform

Requirement change

Database Applications

Alert

DeveloperManager

DC Repo

update update

Fig. 1: The development cycle of a FinTech system

II. BACKGROUND

In this section, we first present the background of FinTech
systems, and then introduce data constraints and their changes.

A. FinTech System Development

To enforce data consistency of FinTech systems, companies
typically build a data reconciliation (DR) platform to examine
the data properties dynamically. Fig. 1 shows the development
cycle of a FinTech system in Ant Group.

• A manager specifies data consistency rules as data con-
straints in a DSL on the DR platform.

• The DR platform evaluates the data constraints on the
database tables and then checks whether the records
satisfy the desired properties.

• When a data constraint is violated, an alert will be sent
to both managers and developers for further diagnosis.

In FinTech systems, service logic is frequently changed
upon new business requirements, where both managers and
developers need to update the data constraints and application
code, respectively. Typically, to enforce data consistency in the
persistent storage layer, the data constraints are updated ahead
of the application code update, which should also address the
changes to data consistency rules.

B. Data Constraints in FinTech Systems

There have been an increasing number of studies on data
constraints [4], [11], [12]. For example, access control lists
serve as a special data constraint describing network traffic
rules [13], while they are not bounded to certain applications.
Yang et al. [4] and Florez et al. [11] comprehensively studied
data constraints in database-backed applications. To the best of
our knowledge, the data constraints in FinTech systems have
the most complex semantics studied so far, where

• A statement is an assertion statement, an assignment
statement, or an if -statement.

• An assertion contains a Boolean expression of one or
multiple clauses connected with logic connectives.

• A variable is either a column variable or a temporary
variable, which loads the attribute value of a record from
a table or stores the intermediate results, respectively.

• An operator can be a comparison operator used in a
clause or an arithmetic operator. We also regard the string
predicates, such as contains and equals, as generalized
operators.

R

assert(user.id != nil);
if (contains(user.type, "MEMBER"))

discount = user.discount;
else

discount = 1.0;
pay = discount * user.cost;

- assert(user.balance - user.new_balance == pay);

R′

assert(user.id != nil);
if (contains(user.type, "MEMBER"))

discount = user.discount;
else

discount = 1.0;
pay = discount * user.cost;

+ if (!equals(trans.type, "PROMOTION"))
+ assert(user.balance - user.new_balance == pay);
+ else
+ assert(user.balance - user.new_balance == pay * discount);

Fig. 2: The old and new data constraints checking the balances

In addition to the form differences, due to the frequent
requirement changes in FinTech systems, data constraints must
be updated accordingly and timely. Under such criteria, to
build links between the data constraint changes and code
demanding modification, existing similarity-based traceability
approaches [5], [7] are limited to robustly finding the linkage,
since the propagation of changes is discarded.

Example 1. The data constraint R in Fig. 2 contains two
assertions. Both assertions have the same clause in Line 1,
examining the nullability of the user id and the consistency
of the account balances and the payment, respectively. The
temporary variable discount stores the discounts for different
types of users. Notably, R utilizes the string predicate contains
to determine if the column variable user.type takes the literal
‘MEMBER’ as its substring. Also, R leverages arithmetic
operators (−) to express the expected relation of account
balances and payment. The new data constraint R′ specifies
promotional data consistency properties in addition to the
original one by adding an if -statement and a new assertion.
At this point, the developers must update their code to reflect
the corresponding data constraint changes.

III. EMPIRICAL STUDY METHODOLOGY

Although making code updates keep up with data constraint
changes is a critical task, there are no mature tools to assist
this due to the lack of systematic studies in understanding the
challenges and characteristics of such a task. To bridge this
gap, in this section, we present a systematic empirical study
based on the dataset collected from real-world applications.

A. Subject Collection

To answer the research questions (RQ1-RQ3), we collect
the FinTech applications developed by a technical unit in Ant
Group. From an internal dashboard, we choose the Top 5 most
frequently-updated applications and their developers as our
study subjects1. These applications have been developed by
an average of 134 developers so far, and their sizes range

1Due to confidential agreement, we are permitted to access the source code
of no more than five applications.

from 147 kLoC to 269 kLoC. On average, each application
is updated with 4 commits per day. In total, there are 5,905
data constraints specified for the five applications, and each
of them is updated an average of 2.28 times. Overall, our
study subjects exhibit the frequently-evolving feature, serving
as typical subjects for studying data constraint changes and
code updates.

B. Analysis of Study Subjects

We propose three analyses with the collected subjects,
which are the user experience analysis, the change analysis,
and the impact analysis. In what follows, we present the details
of the analyses.

User Experience Analysis. To answer RQ1, we first design
the questionnaire to understand whether developers have diffi-
culties in updating code subject to data constraint changes,
and if yes, what is the root cause making such a process
difficult. We designed the questionnaire with the questions
in Fig. 3a. To ensure that the questionnaire is handed out to
the most relevant core developers of the five most actively-
developed applications, we utilize Git histories to select the
developers that have changed over one thousand lines of code
over the last two months. In total, we hand out questionnaires
to 23 relevant developers satisfying these criteria. Through
conducting a thorough user experience analysis, we can gain
a profound understanding of the problem challenges.

Change Analysis. To answer RQ2, we compare the data
constraints before and after each modification. To describe the
change of data constraints, we borrow the concepts of edit
action and edit script in [14]. Specifically, an edit action can
be a node addition, deletion, and replacement upon the abstract
syntax tree (AST) of the data constraint, while an edit script
is essentially a sequence of the edit actions. Technically, we
leverage the AST differencing algorithm [14] to generate the
edit script for each pair of old and new data constraints. Lastly,
we classify the edit actions based on the AST node types as
follows, which further forms several patterns of edit actions.

• Statement: We determine whether the edit action is an in-
sertion or deletion of a statement. We do not consider the
replacement of a statement because it can be represented
by the composition of an insertion and a deletion.

• Expression: To have a fine-grained classification of the
node type, we examine the parents and children of
the node representing an expression. For example, if
the newly-added expression is the operand of a logical
connective, the edit action is actually the clause insertion
for the data constraint.

• Variable or operator: When the node represents a variable
or an operator, the edit action can be the replacement of a
variable or an operator, respectively. We do not consider
the insertion and deletion of variables and operators, as
they are subsumed by the changes in expressions.

Using the change analysis, we process the change history of
each data constraint and obtain the edit scripts of continuous

No. Questions

Q1 Have you met difficulties in updating
code subject to data constraint changes?

Yes No
□ □

Q2

(Multi) If yes, what makes this process hard?
C2.1 Map data constraint changes to code
C2.2 Confirm with managers with requirements
C2.3 Other not listed difficulties

□
□
□

(a) User experience questionnaire

6

17
No

Yes

(b) Results of Q1

82 4 21

C2.1

C2.2
C2.3

(c) Results of Q2

Fig. 3: The results of the user experience analysis

versions. By summarizing the patterns of edit actions, we can
derive the typical ways in which data constraints evolve.

Impact Analysis. To answer RQ3, we utilize intermediate
results of the user experience analysis and the change analysis
to study the impact of data constraint changes on implemen-
tations. Our impact analysis consists of three parts as follows:

• First, we identify the code commits driven by data
constraint changes and the application code diff. We then
ask the developers of the commits to pick out all the
related implementation changes from the diff information.

• Second, we perform the change analysis upon the corre-
sponding data constraint pair for each commit and extract
the edit script to understand the data constraint change.

• Third, we manually inspect its edit script and the modi-
fied implementations and summarize how data constraint
changes affect the implementation updates.

C. Summary

The aforementioned empirical study setups enable us to
investigate the necessity of bridging data constraint changes
with implementations, and understand how data constraints
evolve and affect application code updates in the wild. Par-
ticularly, our study involves various kinds of subjects, such
as the feedback of questionnaires, git history, data constraints,
etc. The overall analysis of our study aggregates the multi-
domain knowledge to demystify the data constraint changes
and their impacts on the evolving FinTech applications.

IV. EMPIRICAL OBSERVATIONS

A. RQ1: Is keeping up with data constraint changes for code
updates difficult?

To answer RQ1, we perform a user experience analysis to
understand developers’ issues with the code update. Specifi-
cally, we collect the developers’ feedback on the questionnaire.
Fig. 3b and 3c show the results of the user experience analysis.
According to the feedback, most developers (17/23=73.9%)
encountered difficulties when keeping up with data constraint
changes for code updates. Among the developers with dif-
ficulties, most developers (13/17=76.5%) thought mapping
data constraint logic to their code changes was the main
obstacle to keeping up with the changes. There are also
some (6/17=35.3%) of developers who admit that they have

to frequently communicate with at least one manager when
a data constraint has been changed, so that they can make
the required changes in the proper methods. Three developers
argue that there are other difficulties in understanding com-
plex data constraints. “The data constraints refer to multiple
database tables, making it difficult to understand the business
logic”, said one of the three developers. According to the
above comments, we find that the mapping data constraint
changes to the application code, which demands an update, is
the key obstacle. To understand the underlying reasons deeply,
we also conducted interviews with two developers who have
mapping difficulties. Both said the reasons are that there is no
direct mapping from data constraints to application code, so
it is laborious to examine the verbose list of methods that
are possible to be updated. Finally, we can safely draw a
conclusion to RQ1.

Finding 1: Developers have difficulty in keeping up with
data constraint changes mainly due to the lack of linkage
between data constraints and related application code.

B. RQ2: How does a data constraint change in an evolving
FinTech system?

To answer RQ2, we conduct the change analysis for each
modification of data constraints, and summarize six kinds of
edit actions occurring in the edit scripts. Fig. 4 demonstrates
three pairs of original and modified data constraints as exam-
ples, while Fig. 5 shows the proportions of the six kinds of
edit actions. In what follows, we demonstrate each kind of
edit action with the examples shown in Fig. 4.

Clause Addition/Deletion. The most common kind of edit
action is clause addition, which takes up 33.79% of the total
changes. The rules R1 and R′

1 in Fig. 4 show an example of the
clause addition. Connected with logical conjunctions, clauses
in the assertion pose a stronger restriction on the database
table loan. Similarly, managers can delete a clause from an
assertion, and the clause deletion takes up 18.23% of the
investigated edit actions.

Statement Addition/Deletion. The addition and deletion
of statements also account for relatively large proportions
(15.90% and 9.53%) of data constraint changes. For example,
R′

3 in Fig. 4 contains a new if-statement, posing an additional

R1 assert(equals(loan.type,"DISTRIBUTE"));
Clause
AdditionR′

1

assert(equals(loan.type,"DISTRIBUTE")
+ && loan.order != nil);

R2
- assert(equals(bill.status,"SUCCESS") &&

equals(bill.state,"OPEN")); Operator
Replacement

R′
2

- assert(equals(bill.status,"SUCCESS") ||
equals(bill.state,"OPEN"));

R3

date = curDate();
- assert(startsWith(iabt. end , date));
- if (iabt.id == "AWUT_UN")
- assert(iabt.budget == iabt.amt);
- else
- assert(iabt.discount == iabt.amt);

Column Variable
Replacement

Statement
Deletion

R′
3

date = curDate();
+ assert(startsWith(iabt. begin , date));

Fig. 4: The examples of edit actions

16.65%

5.91%

15.90%

9.53%

33.79%

18.23%

0% 10% 20% 30% 40%

column variable
replacement

operator
replacement

statement
addition

statement
deletion

clause
addition

clause
deletion

Fig. 5: The proportions of different edit actions

constraint upon the table iabt. In most cases, the insertion and
removal of statements can introduce and eliminate assertions,
respectively, which have the same effect as the insertion and
removal of clauses.

Column Variable Replacement. We find that 16.65% of
changes involve the column variable replacement. For exam-
ple, the new data constraint R′

3 in Fig. 4 examines the values
in the column begin rather than end of the table iabt. Such
kind of changes are often caused by the refined design of the
system, The new data constraint describes a totally different
property from the original one. Besides, the database schema
refactoring can also introduce column variable replacement, as
the managers have to update the column variables according
to the latest schema.

Operator Replacement. We also notice that several modifi-
cations are quite minor, involving the replacement of operators.
In Fig. 4, as an example, the logical conjunction used in R2 is
replaced with a logical disjunction in R′

2. Similar cases include
the replacement of comparison operators and string predicates.

We also quantify the number of edit actions in each edit
script. For most data constraints, the changes are fairly minor,
only involving one or two edit actions, which take up 47.67%
and 21.89%, respectively. For example, the first two pairs in
Fig. 4 only contain a single edit action, while the third pair
has two edit actions. In real-world scenarios, managers are
more likely to adjust a data constraint with a minor revision,
as business requirements often evolve smoothly.

Finding 2: The data constraint changes can involve the
addition or deletion of a clause or statement, and the
replacement of a column variable or an operator.

C. RQ3: How does the application code change when a data
constraint changes?

To answer RQ3, we contacted the developers to manually
collect 116 commits representing the code changes subject to
date constraint updates. Then, we do an impact analysis to
investigate how data constraint changes affect implementation
updates. Now we demonstrate two critical findings with the
examples in Fig. 6, which correspond to the data constraint
changes in Fig. 4.

First, we identify several characteristics of the correlations
between data constraints and application code.

• A column variable in a data constraint corresponds to a
field variable of a class. The application code manipulates
the records in the database tables via field variables.

• A particular class of column variables is a good indicator
of the correspondence between the data constraint change
and the implementation. When column variables appear
in a specific scope of the data constraint, the correspond-
ing field variables are also used in the target methods.

For clarity, we name such column variables and field vari-
ables as the anchored column variables and the anchored field
variables. When bridging data constraint changes and target
methods, the crux is to identify anchored column and field
variables. To resolve the issue, we summarize our observations
on their features in Table I. In short, the occurrence of
anchored column variables depends on the edit action type.

• When adding a new clause or statement, the anchored
column variables are located in the original Boolean
expression or pre-existing statements of the old data
constraint, as the developers need to modify the methods
using the corresponding field variables.

• For the deletion of a clause or a statement, the column
variables in the deleted construct are regarded as anchored
ones. The developers should update specific methods
using the corresponding field variables.

• For the other two edit actions, the anchored column
variables are exactly the changed one or the operands
of the changed operator, respectively.

Example 2. For the clause addition shown in Fig. 4, the
anchored column variable is the column type of the table loan,
inducing the anchored field variable type of the class Loan
in the application code, which is used in the target method
buildLoan. Similarly, we can obtain the anchored column
variables and field variables for other types of edit actions,
which are shown in the last five rows of Table I.

1 public class Loan {
2 @Getter @Setter private String type;
3 @Getter @Setter private String order;
4 }
5 public class LoanDO {
6 public void buildLoan() {
7 String type = loan.getType();
8 + String order = loan.getOrder();
9 - if (type == "DISTRIBUTE") {

10 + && order != null) {
11 LoanDAO.insert(type); // I/O
12 ...
13 }
14 }
15 public void confirmLoan() {
16 String type = getType();
17 String order = getOrder();
18 ...
19 ConfirmDAO.update(type, order);
20 }
21 }

(a)

1 public class Bill {
2 @Getter @Setter private Status status;
3 @Getter @Setter private State state;
4 }
5 public class ConfirmDO {
6 @Getter @Setter private Status s1;
7 @Getter @Setter private State s2;
8 private updateData() {
9 this.setS1((Bill) t.getStatus());

10 this.setS2((Bill) t.getState());
11 }
12 public void confirmDO() {
13 updateData();
14 - if (s1 == "SUCCESS" && s2 != "OPEN") {
15 + if (s1 == "SUCCESS" || s2 != "OPEN") {
16 ConfirmDAO.insertStatus(s1);//I/O
17 ConfirmDAO.insertState(s2); //I/O
18 ...
19 }
20 }
21 }

(b)

1 public class IABT {
2 private DateTime begin;
3 private DateTime end;
4 private String id;
5 private Money budget;
6 private Money discount;
7 private Money amount;
8 ...
9

10 public void buildAmount() {
11 + if (begin == DateTime.now()) {
12 - if (end == DateTime.now()) {
13 - if (id == "AWUT_UN") {
14 - amount = budget;
15 - } else {
16 - amount = discount;
17 - }
18 amountDO.insert(amount);//I/O
19 }
20 }
21 }

(c)

Fig. 6: The examples of application code changes

TABLE I: The features and examples of anchored column and field variables

Edit Action Type Scope of Anchored Column Variables Anchored Column Variables Anchored Field Variables
Table Column Class Field

Clause addition Original Boolean expression loan type Loan type
Statement addition Pre-existing statements – – – –

Clause deletion Deleted clauses – – – –
Statement deletion Deleted statements iabt id, amt, budget, discount IABT id, amount, budget, discount

Column variable replacement Column variables before the change iabt end IABT end
Operator replacement Operands of the operator bill status, state Bill status, state

Finding 3.1: Anchored column variables and field vari-
ables indicate the correspondence between the data con-
straint change and the updated implementation.

To better understand the features of the target methods,
we further investigate the usage of anchored field variables
in the application code. Specifically, we earn the three typ-
ical phenomena of their usage as follows, namely the value
propagation, the use aggregation, and the IO relevance, which
commonly exist in all the investigated cases.

• Value propagation: An anchored field variable is often
retrieved by its getter method and modified by its setter
method, which can yield the propagation of its value to
local variables or the field variables of other classes.

• Use aggregation: The target methods tend to utilize the
values of all the anchored filed variables simultaneously.
The developers can enforce the property specified by
a data constraint by checking all the anchored field
variables.

• Database I/O relevance: The target methods contain
the database I/O operations. The developers follow the
common practice of checking anchored field variables
near the database I/O operations.

Example 3. Fig. 6 demonstrates the above three phenomena.
• In Fig. 6b, the values of the anchored field variables status

and state in the class Bill are propagated to the field

variables in the class ConfirmDO due to the invocation
of updateData.

• As shown in Fig. 6b and Fig. 6c, all the anchored field
variables are utilized in the target methods.

• Lastly, the target methods in all the three examples in
Fig. 6 contain the database I/O operations, inserting the
records to database tables under specific conditions.

The way of using anchored field variables actually orig-
inates from the common programming practice and design.
As the database-backed application, the FinTech application
can form sophisticated def-use chains, propagating the values
of anchored field variables to multiple methods. Also, the
developers tend to constrain the relationship of anchored field
variables within a method that uses all of them simultane-
ously, by checking their relationship before updating database
tables. Hence, the above three phenomena have quite intuitive
explanations, guiding us to automatically localize the target
methods according to data constraint changes.

Finding 3.2: The values of anchored field variables are
propagated to target methods and utilized simultaneously
along with the database I/O operations.

D. Implications

Based on the aforementioned discoveries, it is essential to
establish a mechanism that can identify the relevant methods
in the application code based on alterations in data constraints.

Anchored Field
Variable Identification

Impact
Propagation

Method
PrioritizationçData

Constraints

Application

Method ListAnchored Field Variables Impacted Methods

Fig. 7: The workflow of DCLINK

Essentially, it is a problem instance of traceability link analy-
sis [3], [7], [15]–[17] of which an effective solution can assist
the developers in updating their implementation on time. Test-
to-code traceability techniques [5], [7] are the most relevant
to our problem. However, they utilize string similarities or
dynamic analysis to recover the linkage, which will neglect
the change impacts of source artifacts, i.e., data constraints.
Fortunately, our findings can provide key insights into bridging
data constraint changes to implementation refinement. Specif-
ically, the target methods often use a particular class of field
variables, i.e., anchored field variables, with specific patterns,
which inspires us to pinpoint the target methods with anchored
field variables. In what follows, we propose a static analysis
to bridge the data constraint changes and implementations.

V. TRACEABILITY LINK ANALYSIS

In this section, we present DCLINK, an approach to locating
the target methods that may require modifications in response
to data constraint changes. According to our empirical study,
we observe that the methods using all the anchored field
variables are more likely to be the target methods (Finding
3.2). Based on this key idea, we design the workflow of
DCLINK, which is shown in Fig. 7. It takes the data constraints
of two versions and the old-version application code as input
and returns a list of methods. At a high level, DCLINK consists
of three stages:

• First, it identifies the anchored field variables in the
application code according to the data constraint change.

• Second, it conducts the impact propagation to identify the
impacted methods using an anchored field variable.

• Finally, it aggregates all the impacted methods together
and prioritizes them with a ranking policy.

In what follows, we present the technical detail of each stage.
Throughout this section, we use the data constraints R1 and
R′

1 in Fig. 4 as an example to explain how to localize the
target function buildLoan shown in Fig. 6a.

A. Anchored Field Variable Identification

Identifying anchored field variables requires addressing two
issues. First, we need to identify the anchored column vari-
ables in the data constraints, which can be derived from the
edit actions according to Table I. Second, we must establish
the relationship between anchored column variables and field
variables, which can be obtained from the application’s con-
figuration files. After resolving the two issues, we can identify
the anchored field variables, which can be further used to
determine the impacted methods.

Algorithm 1: Identifying anchored field variables
Data: Data constraints a1 and a2, configuration file c
Result: V : A set of anchored field variables

1 es← EditScript(a1, a2);
2 MV ← ColToFieldVar(c);
3 V ← ∅; A← ∅;
4 forall ea ∈ es do
5 A← A ∪ AnchoredColVar(a1, a2, ea) ;

6 forall (tb, col) ∈ A do
7 V ← V ∪MV [(tb, col)];

8 return V;

Alg. 1 shows the details of identifying anchored field
variables. Initially, the function EditScript obtains the edit
script es via the change analysis (Line 1). The function
ColToFieldVar derives the column-field variable mapping MV

from the configuration file (Line 5). We then process each
edit action and extract the anchored column variables based
on Table I. Finally, we leverage the mapping MV to convert
the anchored column variables to the anchored field variables
(Lines 6–7).

Example 4. In Fig. 4, the data constraint R1 is modified
by adding a new clause. Based on Table I, we extract the
anchored column variable loan.type from the clause in the
original assertion. We derive the mapping of column variables
and field variables from the configuration files from database
integration frameworks, e.g., MyBatis [18]. Finally, we iden-
tify the anchored field variable type in Loan.

B. Impact Propagation

To identify the impacted methods of each variable, we can
process each variable and extract the methods that utilize its
value. Leveraging the datalog-based program analysis [19],
[20], we evaluate the def-use relations to collect the methods
using the anchored field variables.

Our analysis is formulated as Datalog rules [21] in Fig. 8.
The analysis takes three kinds of relations, which indicate the
definition of a variable, the def-use relation, and the method
containing a statement, respectively. Notably, all the above
relations are available in many Datalog-based program ana-
lyzers, such as CODEQL [22]. Based on these three relations,
we define the analysis rules as follows:

• Given an anchored field variable v, identify all its defi-
nitions according to the relation DefVar.

• Compute the transitive closure of the relation DUEdge to
identify all the uses of the value of v.

• Lift the uses to the methods based on Method and collect
the methods in the relation UseMethod.

Input relations
DefVar(v, s) : A statement s defines the value of a variable v

DUEdge(s1, s2) : The value defined by s1 is used in s2
Method(s,m) : The statement s appears in method m

Output relations
UseMethod(v,m) : The method m uses the variable v

Analysis rules
DUPath(s1, s2) :- DUEdge(s1, s2)

DUPath(s1, s3) :- DUPath(s1, s2),DUEdge(s2, s3).

UseVar(v, s2) :- DefVar(v, s1),DUPath(s1, s2)

UseMethod(v,m) :- UseVar(v, s),Method(s,m)

Fig. 8: The rules of the impact propagation

Example 5. As shown in Fig. 6, the anchored field variable
type is used by its getter method, which is not displayed
explicitly. Also, the methods buildLoan and confirmLoan both
invoke the getter method to use the value of type. Thus, our
analysis rules can finally discover the three impacted methods.

C. Method Prioritization

After the impact propagation, we obtain a list of impacted
methods for each anchored field variable. However, a data con-
straint change may induce multiple anchored field variables,
resulting in a lengthy list of impacted methods. Thus, we need
to find an effective policy of aggregating the impacted methods
to pinpoint the target methods.

It is unveiled in Section IV-C that all anchored variables
are often referred to by the same method, and the target
method often contains database I/O operations. Inspired by
those phenomena, we propose an algorithm for the method
prioritization, which narrows down and sorts the methods in
a method list. Given a set of anchored field variables V , we
conduct the method prioritization after the impact propagation:

• Given the relation UseMethod(v,m) maintaining the
impacted methods of each anchored field variable, we
compute their common impacted methods as the potential
target methods, storing them in the set M ′ as follows:

M ′ =
⋂
v∈V

{m | UseMethod(v,m)}

• For the methods in M ′, we prioritize them based on the
number of the database I/O operations in the method.
Specifically, we define the priority function p as follows:

p(m) = |{s | Method(s,m) ∧ DBIOStmt(s)}|

Here, the predicate DBIOStmt indicates whether the state-
ment s induces a database I/O operation. Finally, we sort
the methods in M ′ according to their priority function
values, yielding the method list M as the result.

Example 6. According to Examples 4 and 5, there is only one
anchored field variable which induces three impacted methods.
As shown in Fig. 6a, only the method buildLoan of the class
LoanDO contains a database I/O operation. Thus, it is ranked
at the top of the list due to its highest priority. In fact, it is
exactly the target method modified by the developers.

TABLE II: Hit@K and MAP values of DCLINK, DCLINK-C,
and various conventional techniques

Hit@1 Hit@5 Hit@10 Hit@20 MAP

DCLINK 0.040 0.360 0.760 0.933 0.421
DCLINK-C 0 0 0 0.013 0.033

NC 0 0 0.013 0.013 0.037
LCS-B 0 0 0.013 0.040 0.022
LCS-U 0 0 0 0.013 0.024

Levenshtein 0 0 0 0 0.024

D. Summary

Our traceability problem differs from existing targets and
poses unique challenges. First, existing work [3], [15]–[17],
[23] do not consider the propagation of changes to source
artifacts, which might result in missing linkage to target
artifacts. To this end, we utilize the anchored field variables
to perform static analysis to calculate the impact of changes.
Second, due to the propagation of change, the target method
does not necessarily contain similar names data constraint
variables, making existing similarity-based methods [3], [7]
ineffective. To this end, we follow the observations, use
aggregation and database I/O relevance from our studies,
and design prioritization solution to build links from data
constraint changes to code.

VI. IMPLEMENTATION AND EVALUATION

We implement DCLINK on top of a Datalog-based program
analyzer in Ant Group. To identify the data constraint changes,
we parse the two versions of data constraints and implement
a tree diff algorithm [14] to extract the edit script. To ob-
tain the mapping from table columns to program variables,
we implement a parser to analyze the configuration files of
FinTech applications, such as the Mapper XML files in the
MyBatis framework [18]. Lastly, we leverage the def-use
analysis provided by platform S to achieve impact propagation
in the traceability link analysis.

We evaluate the effectiveness and efficiency of DCLINK by
investigating the following research questions:

• RQ4: How effectively does DCLINK locate the target
methods according to data constraint changes?

• RQ5: How much are the time and memory overhead in
each round of the traceability link analysis?

Data Availability. The subjects of our study, including data
constraints and FinTech applications, cannot be shared because
of confidentiality agreements in Ant Group.

A. Experimental Setup

We conduct the experiments using 75 data constraint
changes, which are not investigated for RQ3 in the empirical
study. Specifically, 89.33% (67/75) of data constraint changes
involve clause additions and deletions, which is consistent
with our second finding of the empirical study. Similar to
the method of studying RQ3, we utilize the git history to
determine the developers committing the updated code, and
ask them to label the target methods for each data constraint

100 101 102 103

DCLink

DCLink-C

NC

LCS-B

LCS-U

Levenshtein

Fig. 9: Size distribution of method lists of each approach3

change, which serves as the ground truth for our evaluation.
When evaluating DCLINK, we feed each data constraint pair
and the old-version application code to it.

Baselines. To show the superiority of our traceability link
recovery, we compare DCLINK with five conventional base-
line approaches. First, we do an ablation study by comparing
DCLINK to a baseline approach DCLINK-C that is set not to
have method prioritization, similar to existing impact analysis-
based approaches [24], [25]. Second, we adopt all possible
baselines from the state-of-the-art test-to-code traceability
recovery [7] set with the same thresholds t, namely similarity-
based approaches, including the naming convention (NC) [5]2,
two longest common sequence variants (LCS-B and LCS-U,
t = 0.8), and Levenshtein distance (t = 0.35) [6]. Other
execution-based (e.g., LCBA [5]) and textual approaches [26]
are discarded since data constraints are not test cases that
invoke application code directly and cannot be applied on the
method level [7].

Metrics. We use the following commonly-adopted met-
rics [3], [8], [27] to measure the quality of the method lists
computed by DCLINK:

• Hit@K: The percentage of the target methods that can
be discovered by inspecting the top K of the returned
list. An effective traceability link analysis should enable
developers to find the target methods by examining as few
methods as possible. The higher metric values indicate
better quality of the solution.

• MAP (Mean Average Precision) [27]: The mean value of
the average precision of predicting the target methods.
When the ascending ranks of the target methods are hi

1,
hi
2, · · · , hi

ki
in the i-th traceability analysis, we have

MAP =
1

N

N∑
i=1

(
1

ki

ki∑
j=1

j

hi
j

)

Here N is the total number of analysis rounds. The higher
the MAP value, the more precise the analysis is.

All experiments are conducted on a Macbook Pro with an
eight-core M1 processor and 16 GB of physical memory.

2Similar to the prior study [7] which removes the “test” prefix for test
methods, we have also removed the prefix of getters and setters.

3Failed linkages are not considered in the plot.

B. Effectiveness of DCLINK

To quantify the effectiveness of the traceability link analysis,
we measure the size of the returned method list and compute
the MAP and Hit@K values, where K ∈ {1, 5, 10, 20}. The
small list size, the high MAP value, and the high Hit@K
values mean effective recovery of data constraint changes with
implementations.

Fig. 9 shows the distribution of different list sizes, ranging
from 1 to 44. As shown in the violin plot, most of the returned
list contains more than four and fewer than 20 methods. The
average size is 8.66, and the median is 7, indicating that the de-
velopers only need to examine fewer than nine methods when
inspecting the results of DCLINK for code update. To deter-
mine whether DCLINK’s result contains significantly fewer
methods, we conduct Mann-Whitney U Test with the null
hypothesis that DCLINK does not significantly return fewer
methods than DCLINK-C and other similarity approaches.
Our results rejected this hypothesis with a p value less than
0.05, demonstrating the necessity of incorporating method
prioritization originated from our study findings. Moreover, the
similarity-based approaches often fail to identify the correct
method demanding code updates. Specifically, our experiment
shows NC, LCS-B, LCS-U, and Levenshtein failed to include
the target methods in 56%, 79%, 68%, and 25% of linkage
results. In these cases, developers need to pay extra effort to
search the target methods manually from all other methods. To
summarize, DCLINK significantly reduces the manual efforts
in searching to-update methods upon data constraint updates.

Table II shows the Hit@K values of DCLINK and other
baselines with different values of K. Specifically, the hit rate
of DCLINK when inspecting the Top 1 and Top 5 methods
are 0.040 and 0.360, respectively. Besides, 76% of the target
methods are located successfully by examining the Top 10
methods. When inspecting the Top 20 methods, the developers
can identify the target methods in 93.3% of the total cases.
Notably, all the target methods are predicted successfully by
DCLINK and DCLINK-C, as all the returned lists contain
the target methods in the experimental subjects. However,
DCLINK-C does not have a high hit rate within the Top
10 attempts and low MAP because the propagation might
return a lot of candidates, which demands further prioriti-
zation. Similarity-based approaches have neither a high hit
rate nor precision (≤ 0.04). Moreover, DCLINK’s MAP value
reaches 0.421, the highest among all approaches, showing a
satisfactory recovery precision. This suggests that similarity-
based approaches can be imprecise due to their unawareness
of change propagations, while DCLINK bridges the gap via a
change propagation analysis and thus is much more precise.

Answer to RQ4: DCLINK features the highest Hit@K
and MAP among all of the approaches, which indicates
its effectiveness in assisting developers in finding meth-
ods for code updates.

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Ti
m
e
(s
ec
on
ds
)

DCLink
DCLink-C
NC
LCS-B
LCS-U
Levenshtein

Fig. 10: Time cost of DCLINK and baselines

C. Efficiency of DCLINK

In our experiment, DCLINK and DCLINK-C consume
53.97 MB and 56.62 MB of peak memory to analyze all
projects, respectively, while similarity-based approaches con-
sume no more than 10 MB. Fig. 10 also shows the detailed
statistics of time consumption. Overall, the time consumption
is within 4 minutes. Specifically, a single run of the traceability
link analysis takes 30.35 seconds on average. The major time
cost comes from evaluating the queries performed by the
Datalog engine. On average, the query execution consumes
30.16 seconds, while the change analysis only consumes less
than 0.2 seconds. Although other similarity-based approaches
generally take less than 9 seconds because they only make
string comparisons, their effectiveness can hardly meet de-
velopers’ needs. In general, DCLINK is efficient in terms
of time and memory consumption, which is efficient enough
to support developers in localizing and updating the target
methods quickly. If integrated into the CI/CD pipeline of data
constraint updates, DCLINK can accelerate the development
workflow by providing supplementary tips to the developers
within the development cycle. Thus, the overall efficiency of
DCLINK is promising, showing its practical value in assisting
FinTech system development.

Answer to RQ5: DCLINK consumes 30.35 seconds
and 53.97 MB of peak memory on average, efficiently
bridging data constraint changes with implementations.

D. Discussions

Threats to Validity. There are two potential threats to the
validity of our work. The first is the subject selection bias. We
only evaluate DCLINK upon the data constraint changes not
investigated for RQ3 in the empirical study. Due to limited
permissions, we could not access the FinTech applications of
other technical units in Ant Group. However, the cases used
for the study and the evaluation are selected randomly, making
our experimental data reflect the performance of DCLINK
for general cases to some extent. The second is the way of
evaluating the effectiveness. In our evaluation, we conduct the
control group study to show the superiority of DCLINK to
the conventional practice. However, a more reasonable way

to evaluate its usefulness should be to get feedback from
developers in the long term, which remains our future work.

Limitations and Future Work. Although the evaluation
demonstrates the advantages of DCLINK, it still faces two
limitations. First, the input relations used in the impact propa-
gation are generated exhaustively, while there might be a large
proportion of the methods not contributing to the final result.
Thus, the redundant computation occurs in the incremental
impact analysis. Second, we observe that DCLINK can spend
much time executing queries. When computing the impacted
methods for different anchored field variables, the queries are
processed independently. However, the impacted methods of
the variables possibly overlap, introducing redundant compu-
tation in the query execution.

In the future, we can further explore the following directions
for improvement. For example, it is meaningful to design an
incremental mechanism for generating relational representa-
tions for an evolving application. Besides, we would improve
the efficiency of query execution with a synergistic design,
i.e., utilizing common intermediate results of the execution to
avoid redundant computation.

VII. RELATED WORK

A. Data Constraints

Formulated as an important domain-specific language, data
constraints have attracted increasing research interest in recent
years. Yang et al. [4] and Florez et al. [11] comprehen-
sively studied data constraints in database-backed applications,
of which the findings guide the detection of inconsistent
data constraints and the implementation of application pro-
grams [3], respectively. Besides, CFINDER [28] and AU-
TORECONCILER [12] target synthesizing data constraints from
application code and runtime data, respectively, effectively
alleviating the manual effort in writing data constraints. Sim-
ilarly, CONSTROPT also synthesizes data constraints, which
further guide the application refactoring to improve the per-
formance [29]. In another recent work, EQDAC determines
the data constraint equivalence efficiently to avoid the redun-
dant runtime verification [30]. Our work concentrates on a
different usage scenario from the ones in existing studies,
where the application code demands modification according
to data constraint changes. Essentially, DCLINK provides a
systematic mechanism of bridging evolving system specifi-
cations expressed by data constraints and system refinement,
which can be generalized and applied to other similar software
systems. For example, the development of networking systems
and protocols has demonstrated a similar pattern [31], [32],
where the updates of data constraints and code changes are
highly co-related. In the future, we intend to extend our
work to study and bridge the data constraint changes and
implementation updates in networking systems.

B. Traceability Link Recovery

There have been a broad number of literature working on
traceability link recovery, establishing the linkage between
different modules of the programs or multiple artifacts of the

systems [3], [7], [15]–[17], [23], [33]–[39]. For instance, sev-
eral studies summarize and link system requirements with the
corresponding implementation by applying various techniques,
including machine learning [15], retrieval models [40], and
dynamic analysis [41]. The most relevant work to DCLINK
is the test-to-code traceability study [7], [33]. A test case
depicts the system specification, which bears similarities to
data constraints in our work. However, previous studies do not
consider the change impact of the test cases, only analyzing the
relationship between specific test cases and program methods.
Besides, DCLINK utilizes the configuration file to obtain the
relationship between variables and attributes in data constraints
instead of simply matching with names [7] and dynamic
profiling [33]. Therefore, DCLINK supports a more robust
traceability link recovery to bridge the data constraint and
application changes.

C. Datalog-based Program Analysis
Datalog is a logic programming language widely used in

declarative program analysis [19], [42]–[49]. In this work,
we feed the change patterns of data constraints and derive
basic relations from the application code of FinTech systems.
Our effort shows the feasibility of bridging the gap between
software artifacts of other forms, such as data constraints,
to software application code. Datalog has also been applied
in incremental program analysis [20], [50]–[52]. We do not
claim to improve the performance of incremental analysis,
but target a different problem, that is, how to abstract and
propagate the change impact of data constraints in FinTech
applications. We believe it would be promising to leverage
existing techniques of incremental Datalog evaluation [53] to
accelerate the analysis of application code.

VIII. CONCLUSION

In this work, we conduct a comprehensive study of data
constraint changes in FinTech systems, demonstrating the
necessity of bridging data constraint changes and implementa-
tions. We then propose the traceability link analysis DCLINK
for inferring the target methods according to data constraint
changes, effectively assisting the developers in updating their
implementations. Our work makes the first step towards pro-
viding implementation support for the developers of evolving
FinTech systems.

ACKNOWLEDGMENT

We thank the anonymous reviewers for valuable feed-
back on this paper, which helped improve its presentation.
Rongxin Wu is the corresponding author and supported by the
Leading-edge Technology Program of Jiangsu Natural Science
Foundation (BK20202001) and NSFC 62272400. Other au-
thors are supported by the RGC16206517, ITS/440/18FP and
PRP/004/21FX grants from the Hong Kong Research Grant
Council and the Innovation and Technology Commission, Ant
Group, and the donations from Microsoft and Huawei. We also
appreciate Dr. Xiaoheng Xie for insightful discussions.

REFERENCES

[1] Amazon. Amazon Prime Day 2022 – AWS for the Win! https://
aws.amazon.com/blogs/aws/amazon-prime-day-2022-aws-for-the-win/,
2022. [Online; accessed 30-Aug-2022].

[2] The New York Times. Knight Capital Says Trading Glitch Cost It $440
Million. https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/
knight-capital-says-trading-mishap-cost-it-440-million/, 2022. [Online;
accessed 30-Aug-2022].

[3] Juan Manuel Florez, Jonathan Perry, Shiyi Wei, and Andrian Marcus.
Retrieving data constraint implementations using fine-grained code pat-
terns. In 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages
1893–1905. ACM, 2022.

[4] Junwen Yang, Utsav Sethi, Cong Yan, Alvin Cheung, and Shan Lu. Man-
aging data constraints in database-backed web applications. In Gregg
Rothermel and Doo-Hwan Bae, editors, ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, pages 1098–1109. ACM, 2020.

[5] Bart Van Rompaey and Serge Demeyer. Establishing traceability links
between unit test cases and units under test. In 2009 13th European
Conference on Software Maintenance and Reengineering, pages 209–
218. IEEE, 2009.

[6] Vladimir I Levenshtein et al. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics doklady, volume 10,
pages 707–710. Soviet Union, 1966.

[7] Robert White, Jens Krinke, and Raymond Tan. Establishing multilevel
test-to-code traceability links. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pages 861–872,
2020.

[8] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim.
Crashlocator: Locating crashing faults based on crash stacks. In
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pages 204–214, 2014.

[9] Shay Artzi, Sunghun Kim, and Michael D Ernst. Recrashj: a tool for
capturing and reproducing program crashes in deployed applications.
In Proceedings of the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 295–296, 2009.

[10] Wei Jin and Alessandro Orso. Bugredux: Reproducing field failures for
in-house debugging. In 2012 34th International Conference on Software
Engineering (ICSE), pages 474–484. IEEE, 2012.

[11] Juan Manuel Florez, Laura Moreno, Zenong Zhang, Shiyi Wei, and
Andrian Marcus. An empirical study of data constraint implementations
in java. Empir. Softw. Eng., 27(5):119, 2022.

[12] Tianxiao Wang, Chen Zhi, Xiaoqun Zhou, Jinjie Wu, Jianwei Yin, and
Shuiguang Deng. Data constraint mining for automatic reconciliation
scripts generation. In René Just and Gordon Fraser, editors, Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2023, Seattle, WA, USA, July 17-21, 2023,
pages 1119–1130. ACM, 2023.

[13] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu,
Qiaobo Ye, Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang,
Ming Zhang, et al. Safely and automatically updating in-network acl
configurations with intent language. In Proceedings of the ACM Special
Interest Group on Data Communication, pages 214–226. 2019.

[14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. Fine-grained and accurate source code dif-
ferencing. In Ivica Crnkovic, Marsha Chechik, and Paul Grünbacher,
editors, ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014,
pages 313–324. ACM, 2014.

[15] Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai,
Bing Xie, and Tuo Wang. A learning-based approach for automatic
construction of domain glossary from source code and documentation. In
Proceedings of the 2019 27th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, pages 97–108, 2019.

[16] Hui Gao, Hongyu Kuang, Xiaoxing Ma, Hao Hu, Jian Lü, Patrick
Mäder, and Alexander Egyed. Propagating frugal user feedback through
closeness of code dependencies to improve ir-based traceability recovery.
Empir. Softw. Eng., 27(2):41, 2022.

https://aws.amazon.com/blogs/aws/amazon-prime-day-2022-aws-for-the-win/
https://aws.amazon.com/blogs/aws/amazon-prime-day-2022-aws-for-the-win/
https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/

[17] Juan Manuel Florez. Automated fine-grained requirements-to-code
traceability link recovery. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pages 222–225. IEEE, 2019.

[18] MyBatis. MyBatis Documentation. https://mybatis.org/mybatis-3/, 2022.
[Online; accessed 30-Aug-2022].

[19] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok
Yang. On abstraction refinement for program analyses in datalog. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 239–248, 2014.

[20] Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. Incremental
whole-program analysis in datalog with lattices. In Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 1–15, 2021.

[21] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always
wanted to know about datalog (and never dared to ask). IEEE Trans.
Knowl. Data Eng., 1(1):146–166, 1989.

[22] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max
Schäfer. QL: object-oriented queries on relational data. In Shriram
Krishnamurthi and Benjamin S. Lerner, editors, 30th European Confer-
ence on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016,
Rome, Italy, volume 56 of LIPIcs, pages 2:1–2:25. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[23] Kevin Moran, David N Palacio, Carlos Bernal-Cárdenas, Daniel Mc-
Crystal, Denys Poshyvanyk, Chris Shenefiel, and Jeff Johnson. Im-
proving the effectiveness of traceability link recovery using hierarchical
bayesian networks. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pages 873–885, 2020.

[24] Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold.
Leveraging field data for impact analysis and regression testing. ACM
SIGSOFT Software Engineering Notes, 28(5):128–137, 2003.

[25] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. Thin slicing. In
Proceedings of the 28th ACM SIGPLAN conference on programming
language design and implementation, pages 112–122, 2007.

[26] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and
Dave Binkley. Recovering test-to-code traceability using slicing and
textual analysis. Journal of Systems and Software, 88:147–168, 2014.

[27] P.J. Layzell and P. Loucopoulos. A rule-based approach to the construc-
tion and evolution of business information systems. In Proceedings.
Conference on Software Maintenance, 1988., pages 258–264, 1988.

[28] Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou. Protect-
ing data integrity of web applications with database constraints inferred
from application code. In Tor M. Aamodt, Natalie D. Enright Jerger, and
Michael M. Swift, editors, Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2023, Vancouver, BC, Canada,
March 25-29, 2023, pages 632–645. ACM, 2023.

[29] Xiaoxuan Liu, Shuxian Wang, Mengzhu Sun, Sicheng Pan, Ge Li,
Siddharth Jha, Cong Yan, Junwen Yang, Shan Lu, and Alvin Cheung.
Leveraging application data constraints to optimize database-backed web
applications. Proc. VLDB Endow., 16(6):1208–1221, 2023.

[30] Chengpeng Wang, Gang Fan, Peisen Yao, Fuxiong Pan, and Charles
Zhang. Verifying data constraint equivalence in fintech systems. CoRR,
abs/2301.11011, 2023.

[31] Jane Yen, Jianfeng Wang, Sucha Supittayapornpong, Marcos A. M.
Vieira, Ramesh Govindan, and Barath Raghavan. Meeting slos in cross-
platform nfv. In Proceedings of the 16th International Conference on
Emerging Networking EXperiments and Technologies, CoNEXT ’20,
pages 509–523, New York, NY, USA, 2020. Association for Computing
Machinery.

[32] Jianfeng Wang, Tamás Lévai, Zhuojin Li, Marcos A. M. Vieira, Ramesh
Govindan, and Barath Raghavan. Quadrant: A cloud-deployable nf
virtualization platform. In Proceedings of the 13th Symposium on Cloud
Computing, SoCC ’22, pages 493–509, New York, NY, USA, 2022.
Association for Computing Machinery.

[33] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lu-
cia, and Ettore Merlo. Recovering traceability links between code and
documentation. IEEE transactions on software engineering, 28(10):970–
983, 2002.

[34] Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lu-
cia. On the equivalence of information retrieval methods for automated
traceability link recovery. In 2010 IEEE 18th International Conference
on Program Comprehension, pages 68–71. IEEE, 2010.

[35] Muhammad Abbas. Variability aware requirements reuse analysis. In
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion), pages 190–193. IEEE,
2020.

[36] Serin Jeong, Heetae Cho, and Seonah Lee. Agile requirement traceability
matrix. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, pages 187–188, 2018.

[37] Juan Manuel Florez, Jonathan Perry, Shiyi Wei, and Andrian Marcus.
Retrieving data constraint implementations using fine-grained code pat-
terns. In Proceedings of the 44th International Conference on Software
Engineering, pages 1893–1905, 2022.

[38] Jinfeng Lin, Yalin Liu, Qingkai Zeng, Meng Jiang, and Jane Cleland-
Huang. Traceability transformed: Generating more accurate links with
pre-trained bert models. In 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE), pages 324–335. IEEE, 2021.

[39] Michael Rath, Jacob Rendall, Jin LC Guo, Jane Cleland-Huang, and
Patrick Mäder. Traceability in the wild: automatically augmenting
incomplete trace links. In Proceedings of the 40th International
Conference on Software Engineering, pages 834–845, 2018.

[40] Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lu-
cia. On the equivalence of information retrieval methods for automated
traceability link recovery: A ten-year retrospective. In ICPC ’20: 28th
International Conference on Program Comprehension, Seoul, Republic
of Korea, July 13-15, 2020, page 1. ACM, 2020.

[41] Malcom Gethers, Huzefa H. Kagdi, Bogdan Dit, and Denys Poshyvanyk.
An adaptive approach to impact analysis from change requests to source
code. In Perry Alexander, Corina S. Pasareanu, and John G. Hosking,
editors, 26th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2011), Lawrence, KS, USA, November 6-10,
2011, pages 540–543. IEEE Computer Society, 2011.

[42] Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang.
Data-driven synthesis of provably sound side channel analyses. In 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 810–822. IEEE, 2021.

[43] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest:
Scalable source code queries with datalog. In European Conference
on Object-Oriented Programming, pages 2–27. Springer, 2006.

[44] Magnus Madsen and Ondřej Lhoták. Safe and sound program analysis
with flix. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 38–48, 2018.

[45] Ramy Shahin, Marsha Chechik, and Rick Salay. Lifting datalog-based
analyses to software product lines. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 39–49,
2019.

[46] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detec-
tion for java. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 308–319,
2006.

[47] V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities
in java applications with static analysis. In USENIX security symposium,
volume 14, pages 18–18, 2005.

[48] Monica S Lam, John Whaley, V Benjamin Livshits, Michael C Martin,
Dzintars Avots, Michael Carbin, and Christopher Unkel. Context-
sensitive program analysis as database queries. In Proceedings of the
twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pages 1–12, 2005.

[49] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis.
ACM SIGPLAN Notices, 36(5):24–34, 2001.

[50] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter.
Incrementalizing lattice-based program analyses in datalog. Proceedings
of the ACM on Programming Languages, 2(OOPSLA):1–29, 2018.

[51] Chungha Sung, Shuvendu K Lahiri, Constantin Enea, and Chao Wang.
Datalog-based scalable semantic diffing of concurrent programs. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pages 656–666, 2018.

[52] David Zhao, Pavle Subotic, Mukund Raghothaman, and Bernhard
Scholz. Towards elastic incrementalization for datalog. In 23rd
International Symposium on Principles and Practice of Declarative
Programming, pages 1–16, 2021.

[53] Leonid Ryzhyk and Mihai Budiu. Differential datalog. Datalog, 2:4–5,
2019.

https://mybatis.org/mybatis-3/

	Introduction
	Background
	FinTech System Development
	Data Constraints in FinTech Systems

	Empirical Study Methodology
	Subject Collection
	Analysis of Study Subjects
	Summary

	Empirical Observations
	RQ1: Is keeping up with data constraint changes for code updates difficult?
	RQ2: How does a data constraint change in an evolving FinTech system?
	RQ3: How does the application code change when a data constraint changes?
	Implications

	Traceability Link Analysis
	Anchored Field Variable Identification
	Impact Propagation
	Method Prioritization
	Summary

	Implementation and Evaluation
	Experimental Setup
	Effectiveness of DCLink
	Efficiency of DCLink
	Discussions

	Related Work
	Data Constraints
	Traceability Link Recovery
	Datalog-based Program Analysis

	Conclusion
	References

