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Abstract

Loops are commonly-used control structures in real-world programs and make it con-
venient for programmers to implement complex functionalities of program. However,
the incorrect manipulation inside loops are the cause of many critical vulnerabilities,
such as buffer overflow and string fault, and redundant instructions and inefficient
scheduling inside the loop can slow down the execution.

Static program analysis, one of classical program analysis techniques, takes source
files as inputs and analyzes the behaviors of the program without actual execution.
It has been proven useful for bug detection, program verification, and program per-
formance optimization. Despite the effectiveness of static analysis, the loops are still
regarded as its Achilles heel. Due to the non-deterministic number of iterations, it is im-
possible to simulate the execution to obtain all the possible loop states. In order to get
the partial or whole effects of the loops, static loop summarization has been proposed
to generate loop summaries summarizing relationship of input and output represented
by a set of logical constraints, which helps in the understanding of the behaviour of
loops.

There have been a large body of literature on loop summarization, most of which
focus on numeric loops and single loops. Besides, the string loop and multi-path loops
are also the major concerns of researchers. Nevertheless, the previous works have been
highly restricted to the form of the loops and can not be applicable to more complex
ones, including nested loops and data structure traversal.

In this review, we discuss typical works on static loop summarization and their
applications in test case generation, program performance analysis, and loop termina-
tion analysis. With the aim of practical loop summarization, our future directions and
several concrete problems are discussed.

1 Introduction

Loops are commonly used control structures in real-world programs. Although the
flexible usages of loop conditions and nested loops make it convenient for program-
mers to implement complex program functions, many critical vulnerabilities, such as
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buffer overflow and string fault, are caused by the incorrect manipulation in the loops.
Meanwhile, redundant instructions and inefficient scheduling inside the loop create the
demands of performance analysis and program optimization.

In order to analyze the program with loops, several program analysis techniques,
including static program analysis, model checking, and dynamic program analysis to
obtain possible states of loops. Static program analysis, which takes source files as
inputs aims to over-approximate possible program states without actual execution, is
widely used for bug detection, program verification, code refactoring, and performance
optimization. Theoretically, compared with dynamic analysis, the results generated by
over-approximation can cover all the possible states theoretically, which assures the
soundness of the analysis. However, loops are still regarded as Achilles’ heel of static
analysis. Due to the non-deterministic number of iterations, it is impossible to simulate
the execution to obtain all the possible loop states. In order to get the partial or whole
effects of the loops, static approaches have been proposed for loop analysis, namely
loop unwinding, loop invariant generation and loop summarization.

Loop summarization provides a more accurate and adequate comprehension of
loops. It summarizes the relationship between input and output of a loop by a set
of constraints [10]. In this review, we will discuss static loop summarization. It pro-
vides a more accurate and adequate comprehension of loops and has a wide application
in test case generation, program performance analysis, and loop termination analysis.

The contributions of this review include: (1) classify the loops based on the loop
structure and data structure; (2) summarize the approaches to summarizing different
types of loops and analyze their advantages and disadvantages; (3) propose the possible
directions for loop summarization in the future.

The literature review is organized as follows. In section 2, we will give a detailed
classification of the loops in real-world programs. In section 3, recent works on static
loop summarization will be discussed, which are aimed at different types of loops, in-
cluding string loops, numeric loops, and multi-path loops. The comparison and the
limitation will be given by case studies in section 4. Section 5 will give several exam-
ples of the applications based on static loop summarization. The conclusion and the
future direction will be discussed in section 6.

2 Loop Classification

To summarize a loop, it is important to classify the loops in the real-world programs and
deal with each type specifically. Here we discuss four criterion of loop classification,
including the types of data in the loop, linearity of arithmetic operations, the form of
branch conditions, and the number of loop paths.

Numeric loops, especially integer loops, are the objectives of most of the static
loop analysis [5, 8]. According to the value change of the integer variables in loop
conditions, numeric loops can be classified in a more fine granularity. If the value
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change of the branch condition variable is constant, the condition is an inductive vari-
able condition. Based on whether the loops contain the non-inductive variable condi-
tions, the loops can be divided into two categories, briefly denoted by IV loops and NIV
loops [10]. Compared with IV loops, it is far more difficult to get a precise summaries
of the values in NIV loops due to the nondeterministic value change. Another criteria
of numeric loops is based on the type of arithmetic transformation in the loops [5].
More specifically, the loops which consist of a sequence of affine operations are called
linear loops and the value of the variables in each iteration can be represented precisely
in a closed-form. Non-linear loops, in which the semantic of one iteration cannot be
represented by a linear transformer, are more complex than linear loops, because the
precise values in each iteration might not be easily summarized. Several attempts have
been made to summarize the loops with linear operations and inductive variable condi-
tions in the past two decades. The summaries generated for the two types of loops can
be represented by a matrix and a group of constraint respectively.

Apart from numeric loops, the loop manipulating particular types of data struc-
tures is also frequently used in the real-world programs. For example, the traversals
of the array, string, and containers in the C++ STL library are common instances of
the loops [6]. Different from the loops manipulating arrays and the strings with a fixed
length, the sizes of dynamic data structures, including containers, are not determinis-
tic, and these data structures are accessed and altered in a more sophisticated manner
via library functions and APIs. The dynamic memory allocation and the sophisticated
semantics in the loops pose a great challenge to the summarizing of these loops.

Moreover, path interleaving in the multi-path loops is another source of the com-
plexity that needs to be considered. In Xie’s work [10], two critical pieces of infor-
mation to identify path interleaving patterns are pointed out, namely the number of
iterations and the execution order of each path. Based on these two kinds of informa-
tion, the patterns of path interleaving are divided into three types, namely sequential,
periodic and irregular. The first two of them are regular patterns and the paths can be
abstracted precisely in the theory of linear-integer arithmetic.

In [2], a static analysis framework CLAPP is proposed to perform a large-scale
empirical study on why and how Android applications take advantages of loops. The
actions triggered by APIs upon containers is considered in this work . In [10], the
authors conduct a comprehensive investigation of real-world loops and study the dis-
tributions of loop classification based on the criterion of path interleaving pattern and
the form of branch conditions. It is depicted that there are a considerable amount of
loops with inductive conditions and regular patterns of path interleaving, which ac-
counts for 33.87% of those in the real-world programs. The behavior of these loops
is predictable, and they are the main objects of current loop summarizations. NIV
loops, many of which manipulates complex data structures, take up 66.01% of loops in
real-world programs and are still a pain point of loop summarization.
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1 whi le ( i < n ) {
2 sum = sum + i ;
3 i ++;
4 }

Figure 1: Loop for summation

3 Approach

The loop summarization aims to model the effect of the loop in the execution by the
constraints with respect to the input and output values of the loop. For example, in
Figure 1, the summary of the loop in Figure 1 is formalized by the constraints shown
in 1, which provide the relationship of the initial and updated values of the variables.

i′ = n

n′ = n

sum′ = sum+(i+ i′−1)∗(i′− i)/2

(1)

In the above example, the constraints are in the theory of linear-integer arithmetic.
For the loop manipulating data structures and multi-path loops, the form of summaries
are more complex. On the one hand, arithmetic theory might be expressive enough to
support the modeling of the semantics by the constraints. On the other hand, a large
amount of disjunctives can be brought out by the multi-paths if summarizing the loops
based on path summaries. In the following three subsections, we will review the loop
summarization of numeric loops, string loops and multi-path loops with the example
of the loop and the constraints generated in the summarization.

3.1 Numeric Loop Summarization

In recent works, numeric loops are modeled by symbolic matrices with several specific
assumptions, such as the assumption that arithmetic operations are the linear combina-
tions of the variables in the loop. In the work [3], the symbolic matrix representing the
semantics of the loop is decomposed into Jordan normal form, which can be utilized to
the computation acceleration of the closed forms of the variables, which is meaningful
to refactor the loops to decrease the time complexity. However, the effectiveness of the
approach depends on the assumption that the symbolic matrix can model the effect of
the loop precisely, i.e., there are no non-linear operations and branch conditions.

Compared to the approach in [3], the summary technique in [5] provides a more
general and fundamental perspective of loop summarization. Firstly, additional nu-
meric quantities, such as the number of memory accesses, are taken into consideration,
which makes the summary contain richer information. Secondly, it is proven that the
logic for expressing the summaries is decidable, which yields decision procedures for
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1 # d e f i n e MAXLINE 50
2 void r e q u e s t ( char * i n p u t ) {
3 char f b u f [MAXLINE + 1 ] ;
4 i n t i = 0 , fb = 0 , f = 0 ;
5 whi le ( i n p u t [ i ] != ’\0 ’ ) {
6 i f ( i n p u t [ i ] != ’\n ’ && f <= MAXLINE)
7 fb ++;
8 f ++;
9 i ++;

10 }
11 f b u f [ fb ] = ’\0 ’ ;
12 }

Figure 2: An example of string loop [11]

verifying the safety and termination of a class of numerical loop over rational numbers.
It is shown that the procedure for computing for a class of numeric loops can be used
to over-approximate the behavior of arbitrary numerical programs.

Numeric abstract domains, including polyhedral domain and octagon domain, are
utilized for over-approximate the possible values of numeric variables in order to obtain
the numeric invariants at the entry and exit of the loops, which reflect the relationship
of the numeric variables. Although it is natural to handle linear arithmetic branch
conditions, the invariants cannot capture the correlation between the input and output
of the loop.

3.2 String Loop Summarization

String loop is another common type of loops. In each iteration, the characters in the
string can be accessed or overwritten. The length of the string can be changed owing
to certain write operations, which change the position of the first ending character.
Figure 2 shows a simple example of string loop. The string is accessed by the index i
and there is no element changed in the loop. A buffer overflow bug can occurs provided
with certain input string if the value of fb at the exit of the loop exceeds MAXLINE.

One of the challenges in string loop summarization is that the loop conditions are
mostly dependent on the content of the string, which demands on more sophisticated
theories to support the modeling the semantics by constraints. With the benefit of
the development of string solver techniques [4], the solving of string constraints can
be supported, which sheds light on the loop summarization of the string loop. In S-
Looper [11], the summary of a string loop is summarized by a group of string con-
straints. Different from most linear numeric loop summarization, S-Looper aims to
fit in a more general class of loops, which contains multiple paths. Inspired by the
path abstraction technique in [7], S-Looper focuses on the loops which contain string
comparisons and access operations, and generates string constraints related to the path
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1 whi le ( x < n ) {
2 i f ( z > x ) x ++;
3 e l s e z ++;
4 }

Figure 3: An example of multi-path loop [10]

counters and the content of the substrings. The constraints can be further utilized in
program verification and symbolic execution.

For a more general string loop, complex branch conditions make the pattern of
path interleaving irregular. Moreover, the change of string content in the iterations can
also increase the difficulty of solving the path conditions. Branch conditions and the
change of string content in the loop degrade the effectiveness of path counter based
summarization techniques.

3.3 Multi-path Loop Summarization

Path interleaving of multi-path loops is another root of difficulty for loop summariza-
tion. Figure 3 shows an example of multi-path loop. The loop contains three paths,
namely π1 ∶ b→ c→ b, π2 ∶ b→ e→ f → b and π3 ∶ b→ d, and the possible path traces
include π1 → π3 and π1 → π2 →⋯π1 → π3. In the actual execution, the length of the
trace sequences can be infinite, and interleaves in a chaotic manner. This poses a great
challenge to establishing a precise and sound abstraction of loop paths.

To the best of our knowledge, Proteus [10] is the first work to consider path inter-
leaving in multi-path loop summarization. It aims to summarize the integer loops with
multi-paths. Based on the observation that the loop summary is the disjunctive of the
trace summaries, Proteus attempts to summarize all the feasible traces by combining
of the summaries of its paths one by one. In order to collect all the feasible traces,
Path Dependency Automaton(PDA) is proposed in which the states represent the loop
paths and the transitions represent the feasible path interleaving, where the constraints
are labeled to indicate the condition of the interleaving. The summaries of the traces
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in some certain regular patterns can be obtained based on the transition conditions of
PDA, and the loop is summarized by the disjunctive of the trace summaries.

Figure 4: Path Dependency Automaton [10]

Although the evaluation part shows that the loop summaries can be effectively uti-
lized in the loop bound analysis and symbolic execution-based test case generation,
there still has several limitations in the cases of complex loop structure or the loops
manipulating data structures and suffers the explosion of the disjunctives when the
number of the branches is large.

4 Comparison

It is commonly known that a general approach to summarizing of a general loop in
any form does not exist. In order to perform precise static loop summarization at best
effort, the approaches need to be combined on demands.

According to the forms of the loop, the loop summaries obtained can be divided
into two categories. The first category of loop summaries include of string loop sum-
maries in [11] and mltiulti-path loops in [10]. They are a group of the constraints in
string theory and linear-integer arithmetic theory, which can not computes the value of
loop variables explicitly. The second category is the closed-form summaries of some
certain classes of numeric loops, based on which the values in each iteration can be
calculated directly. The closed forms of the loops can be regarded as the equivalent or
approximated semantics of the loop.

In the following part, we give a brief qualitative comparison of these approaches in
terms of precision, efficiency, and capability.

Precision Closed-form summaries can reflect the internal program states in each
iteration of the loops while constraint-form summaries cannot. The summaries of nu-
meric loops are more precise than the summaries of string loops and multi-path loops.

Efficiency Constraint solvers are in high demand when integrating constraint-form
summaries, and the invocation of solvers can be time-consuming in the case of large-
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scale programs. In contrast to constraint-form summaries, it is straightforward to com-
pute the closed-form summaries based on the matrix multiplication algorithm.

Capability String loop summarization technique in [11] can summarize the single
loops without path interleaving precisely, and the effectiveness is degraded in the pres-
ence of complex path interleaving. By contrast, multi-path loop summarization takes
path interleaving into account, and its objectives cover a wider range of loops.

5 Application

5.1 Termination Analysis and Loop Bound Analysis

Loop bound analysis aims to estimate the bound of the loop. The constraint-form loop
summaries in [10, 11] are natural to be applied to loop bound analysis by adding up the
path counters. The estimated bound can strengthen the ability of program verification
technique, such as bounded model checking, to handle the programs in the presence of
loops.

Slightly different from loop bound analysis, loop termination analysis is to deter-
mine whether the loop can terminate after the finite number of executions [2, 9] It is
an important problem to assure system security, and performance problems and denial-
of-service attacks can be triggered by non-termination bugs. In [9], Loopster takes
advantage of a divide-and-conquer approach to determine the termination of multi-path
loops, and the termination of the target loop can be approximated by the termination of
each path. Other techniques of loop termination analysis, including ranking functions,
are discussed in the part of related work in [9] and compared with loop summarization
based approaches.

5.2 Performance analysis

Performance analysis and loop optimization: The performance problems caused by re-
dundant or inefficient computation in loop iterations can be detected based on the loop
summarization [1]. In addition, composable and sound transformations can improve
the performance of the execution without changing the function of the loops [8]. The
redundant traversal of collections is explored in [6], and asymptotic performance bugs
can be detected based on the write and traversal footprint. In this work, the footprint is
the profile of the loop, which can be regarded as another form of loop summary.

5.3 Test case generation

Current bug detection techniques suffer the problem of path explosion when analyzing
the programs with loops. Fortunately, loop summaries abstract the semantics of the
loops and approximate the loop states, thus help other program analysis techniques to
comprehend the loops better.
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Symbolic execution unrolls the loop with a fixed number of iterations, and the
whole program state space might not be explored thoroughly due to insufficient number
of unrolling. In the work [10], Proteus is integrated into symbolic execution engines,
and the loops are regarded as black boxes, of which the semantics are encoded by the
loop summaries. This improvement can accelerate symbolic execution engines in the
application of test case generation.

6 Conclusion and Future Work

This review has enumerated the recent works on the summarization of different type of
loops. According to our survey, it is found that the loop summaries including closed
forms and logical constraints provide useful information of loops and have a wide ap-
plication in loop termination analysis, test case generation and loop performance anal-
ysis. Path abstraction based on path counting provides the possibility to summarize
the loops with inductive branch conditions, and path dependency provides the insight
to extend the path counter based approaches to summarization of general multi-path
loops. For numeric loops, the symbolic matrices abstract the linear arithmetic opera-
tions effectively and benefit the loop acceleration. There are several empirical studies
on the loops in the real-world programs, which discover interesting phenomena about
the structure of loops.

However, current loop summarization approaches still face great challenges. The
first challenge is that current approaches can not handle complex data structure
in the loop. For example, the traversal of a linked list or a collection is often involved
with the data stored in the node or element, and path interleaving pattern might be more
complex. More expressive and specific models are demanded to encode the layout of
data structure and operations on it, including manipulation via pointer values, and other
APIs.

The second one is complex loop structures, including nested loops and multi-
path loops, can not be dealt with by current approaches effectively. The complexity
of path interleaving is the cause of difficulty of encoding the effect of statement by
constraints.

To achieve a practical loop summarization, there is still a long way to go, but the
path is looking considerably brighter with the development of static analysis.
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