
Summary of Pinpoint and IFDS/IDE
The document summarizes the problem domains of Pinpoint and IFDS/IDE framework, and
demonstrate the feasibility of adapting IFDS/IDE problems to Pinpoint. Advanced bugs, which are
out of the problem domain of Pinpoint, are briefly introduced with an example of loop hoisting.

Meanwhile, the layers of pointer analysis in the IFDS/IDE framework and Pinpoint are compared
to point out the difference in terms of the way to use the result of pointer analysis and their
precision. Although these two styles of approaches are both based on layer design, IFDS/IDE
framework does not suffer pointer trap， because top clients of data flow analysis are path
insensitive and do not rely on sparse analysis, which makes Pinpoint distinguished from it.

The conclusion is delivered in the end. Pinpoint reduces the value flow analysis to the constrained
reachability problem in the symbolic expression graph, and processes the attributes of general
graph representation and uniform bug specification, which support flexible scheduling of a
collection of bug detectors. Based on the observation, an IFDS/IDE problem can be formulated as
a value flow problem in the problem domain of Pinpoint.

Part 1: Problem Domain of IFDS/IDE

The solving of IFDS/IDE problem is formulated by two components

A set of data flow fact

IFDS: A finite set of dataflow fact D
IDE: Environment Env mapping dataflow elements to values in a lattice.

Flow function

IFDS: Gen-Kill function
IDE: Environment transformer

Example

IFDS Problem

According to whether the form of the flow function depends on the input or not, IFDS problem
can be classified into two types. For separable problems, the function in the program can be
summarized by a bit-vector function f(x) = (x - Kill) \cup Gen , where Kill and Gen are
constant [7].

Separable problems:

Reaching definition
 Available expression
Live variables

Non-separable problems

Possibly-uninitilized variables
May/Must-alias analysis
Truly-live variables
Copy-constant propagation
Taint analysis

IDE Problem

Constant propagation [10]
Software product line analysis [9]

Part 2: Problem Domain of Pinpoint

The detection of bug type BType can be defined by a set of value-flow properties S_p = {(src;
sink; psc; agg)} [1, 2].

Modeled by Single Value-flow Property

Bug Type 1: Null-Dereference-Like Bugs

(SinkMustNotReach) The operation never occurs in any path, i.e., agg=never

Example

Null pointer dereference
Bad buffer size From System function
Divide by zero
Free of non-heap memory
Use of uninitialized variables
Integer overflow
File descriptor use after free (Taint-style)
Data race (Taint-style)

Remark: DivideByZero and NPD are similar

Example The value-flow property of NPD is

 null-deref:=(v = malloc(_); _ = ∗v,∗v = _;v = 0; never)

Bug Type 2: Memory-Leak-Like Bugs

(SinkMustReach) The operations must occur in any path, i.e., agg=always

Example

Memory leak
File descriptor leak

Bug Type 3: Double-Free-Like Bugs

Two operations never occur simultaneously in one path, i.e., agg=non-sim

Example

Double-free

Modeled by Compositional Value-flow Property

Buffer overflow (SinkMustNotReach)

Buffer copy without checking input size
Incorrect calculation buffer size

Conclusion

The value-flow property is defined by a 4-tuple (src; sink; psc; agg) . Bug specification
is a composition of one or more value-flow properties.
The bugs with the same value-flow properties distinguished from each other in terms of the
type of value and the operations on them in the program, although the conditions of
triggering the bugs might be totally the same, e.g., DividedByZero and Null Pointer
Dereference.

Part 3: Model IFDS/IDE Problem in Pinpoint Style

IFDS problem

Copy-constant propagation: Given a program P and a variable x at a certain point lc ,
determine whether the variable x has the same value at lc for any program execution.
The constant value does not depend on the execution.

IFDS/IDE framework collects all constant integers to form D and obtain the facts
reachable at lc .
For Pinpoint, two SEG traces: 0 -> a and 1 -> b -> a The analysis demands the
comparison of two traces. It should be noticed that searching strategy affects the
problem domain of Pinpoint. Specifically, the comparison can be reduced to searching
SEG paths in two directions, and the path 1 -> b -> a -> 0 indicates that the
property is violated.

IDE problem

Constant propagation: Generalize the program to any arithmetic program [10].

IDE-style framework records the computation in the environment Env
It is straightforward to adapt Pinpoint by collecting constant-value in the constraints,
which records the mapping of variables in Env in essence.

//Syntactic assumption: a = const; a = b;
int a = 0;
int b = 1;
if (c) {
 a = b;
}
//whether a is constant or not

Conclusion

Searching stragety affects the domains of problems in Pinpoint. In different configurations,
the searching direction and constraint types determine the border of problem domains.

Part 4: Advanced Bugs

For other types of bugs, such as loop hoisting [5], it is out of the problem domain of Pinpoint,
because the specification of these bugs can not be formulated by value-flow properties.

Part 5: Pointer-Analysis Layer

Pinpoint

Pinpoint outperforms IFDS/IDE framework in terms of path sensitivity. In the phase of SEG
construction, path conditions are encoded in a sparse manner, i.e., irrelevant statements are cut
out according to the data dependency, so that the scalable analysis can be achieved with high
precision.

The calculation of data dependency relies on the results of pointer analysis. Imprecise pointer
analysis causes spurious data dependency, and degrades the precision improvement of sparse
analysis. In order to solve this pointer trap, Pinpoint offloads path sensitive analysis to the
detection of specific bug, i.e.,

Step 1: Perform intraprocedural flow-sensitive pointer analysis and interprocedural
parameter-return points-to summary.

int incr(int x) {
 return x + 1;
}

// incr will not be hoisted since it is cheap(constant time)
void foo_linear(int size) {
 int x = 10;
 for (int i = 0; i < size; i++) {
 incr(x); // constant call, don't hoist
 }
}

// call to foo_linear will be hoisted since it is expensive(linear in size).
void symbolic_expensive_hoist(int size) {
 for (int i = 0; i < size; i++) {
 foo_linear(size); // hoist
 }
}

https://fbinfer.com/docs/all-issue-types%23expensive_loop_invariant_call

Step 2: Obtain data dependance based on points-to relation and construct Symbolic
Expression Graph(SEG)
Step 3: Traverse SEG and collect constraints.

IFDS/IDE Framework

Path insensitivity makes IFDS/IDE framework escape from pointer trap. For a particular analysis,
such as typestate analysis, the preprocess of pointer analysis is required to aliasing.

One of the typical work is IDEal [9] and it takes advantages another IFDS/IDE framework
Boomerang for pointer analysis [4]. The analysis takes the following steps:

(Boomerang) Backward analysis to identify the allocation sites.
(Boomerang) Forward analyisis to obtain aliasing relation.
(IDEal) During the phase of value-flow propagation, aliasing relation is utilized to propagate
in-direct value flow.

The examples illustrate the procedure of computing aliasing relation and value-flow propagation.

Conclusion

The layers of pointer analysis in these two frameworks both perform flow-sensitive analysis.
The differences include

The usage of result: Pinpoint utilizes it to construct SEG for sparse analysis while

IFDS/IDE framework takes advantage of it to propagate value flow fact in a full manner.
The demand of precision: Pinpoint calls for path sensitive result and offload the
overhead to clients to mitigate pointer trap. IFDS/IDE framework focus on flow- and
context-sensitivity rather than path sensitivity.

Conclusion

Pinpoint reduces the value flow analysis to the constrained reachability problem in the
symbolic expression graph.

Given a symbolic expression graph(SEG), the detection of bug type BType can be
defined by a set of value-flow properties S_p = {(src; sink; psc; agg)}

Constraint 1(Reachability Constraint)

The environment CondEnv computes the conditions of the path in SEG, from src to
sink . src and sink are reachable if and only if there is a path such that the
condition in CondEnv implies psc .

Constraint 2(Aggregation Constraint)

agg=never : There is no reachable path from any one pair of source and sink.
agg=always : The disjunction of condition from any one of source to all the sinks
is valid.

The paths violating these two constraints are the evidence of the presence of bug
BType

Attribute of Pinpoint

General program representation, i.e., SEG is dependent to bug type.
Uniform bug specifications, i.e., bug specifications are formulated by value-flow
properties, based on which bugs can be grouped according to the sinks and pre-
conditions.

Advantage over IFDS/IDE framework

Precision: Pinpoint benefits from the sparse analysis and achieves path sensitive with
low cost, while exploded super graph does not store the branch condition and yield
path insensitive result.
Efficiency: Uniform bug specification supports the multiple bug detection in one pass
and searching process of reachable paths can even be optimized according to mutual
synergies.

Relationship of problem domain

The problem domain of Pinpoint subsume IFDS and IDE problems.

Appendix and Memo: Optimization in Pinpoint

For multi-bug detection, it is costly to perform the analysis for each bug. Pinpoint support the
detection of all bug types in one check. The observation is that the bugs with the same sinks can
be detected simultaneously, in which the searching process of one type of bug can be terminated
soundly according to the information collected when searching SEG traces for the other type.

The similar observation is the inconsistent pre-condition provides extra information to reduce the
overhand of constraint solving.

Dual Group 1(Same sink)

Memory leak
Free global pointer

Dual Group 2 (Inconsistent pre-condition)

Memory leak
Null pointer dereference

Reference

1. Pinpoint: Fast and Precise Sparse Value Flow Analysis for Million Lines of Code (PLDI 2018)
2. Conquering the Extensional Scalability Problem for Value-Flow Analysis Frameworks (ICSE,

2020)
3. IDEal: efficient and precise alias-aware dataflow analysis (OOPSLA 2017)
4. Boomerang: Demand-driven flow- and context-sensitive pointer analysis for Java (ECOOP

2016)

5. Infer: List of all issue types (link)

6. Detecting Memory Leaks Statically with Full-Sparse Value-Flow Analysis.
7. Precise interprocedural dataflow analysis via graph reachability
8. Program analysis via graph reachability
9. IDEal : efficient and precise alias-aware dataflow analysis (OOPSLA 2017)

10. SPLLIFT- Statically analyzing software product lines in minutes instead of years (PLDI 2013)
11. Precise interprocedural dataflow analysis with applications to constant propagation

https://fbinfer.com/docs/next/all-issue-types

	Summary of Pinpoint and IFDS/IDE
	Part 1: Problem Domain of IFDS/IDE
	Example
	IFDS Problem
	IDE Problem

	Part 2: Problem Domain of Pinpoint
	Modeled by Single Value-flow Property
	Modeled by Compositional Value-flow Property
	Conclusion

	Part 3: Model IFDS/IDE Problem in Pinpoint Style
	IFDS problem
	IDE problem
	Conclusion

	Part 4: Advanced Bugs
	Part 5: Pointer-Analysis Layer
	Pinpoint
	IFDS/IDE Framework
	Conclusion

	Conclusion
	Appendix and Memo: Optimization in Pinpoint
	Reference

