
Separation Logic in Infer

Operational Semantics

How to establish memory model in the presence of pointers?

By Hoare Triple

Basic Idea

It analyzes programs by generating and composing function specifications in a bottom-up
manner by means of bi-abduction. The specification of a function is a set of Hoare Tripes
{{P} func() {Q}}, where P is the weakest pre-condition of the safe execution of the function
func. A function and its callees are bug-free if its specification set is not empty, indicating that
these functions are executed without bugs under some preconditions.

How to achieve context sensitive?

The context-sensitivity is achieved by inferPre and inferSpec illustrated by Algorithm 4
and 5 in his paper of short version(POPL 2009). The inferred specifications of the
callees are inlined to get the weakest precondition and postcondition of the caller.

How to achieve path sensitive?

This work does not support path sensitivity thoroughly. If the branch condition occurs
in the weakest precondition at the entry of the branch after the condition, the effect of
the branch condition is considered by removing the conjunction from the formula to
generate the better weakest precondition, like the following first example shows.
Otherwise, the branch condition will be skipped, just as the second example shows.
Because the precondition is not weakest anymore, this trick can cause false alarms
when the failure in generating specifications of its caller arises.

An Example

http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/popl09.pdf

An Example

In this example, the specifications of functions are generated in a bottom-up manner, where the
specification of the function is a collection of Hoare Triples {{P} fun() {Q}} . Specifically, P and
Q are the weakest pre-condition and post-condition of func in safe executions. Meanwhile, The
weakest precondition and postcondition of each statement can be obtained in this process, and
they can be used to verify or invalidate the assertion. For example, the post-condition in the third

picture shows that the assert(x==q) does not hold for all the executions. This is consistent to
the actural execution of the program.

However, the analysis degrades the precision of the specification of bar . The specification
obtained in the first picture shows that the safe execution of qux does not rely on the branch
condition. The heuristic trick handling paths of their approach ignore the effect of the branch
conditions, so the post-condition of bar presumes the cases that U=V=W , which do not occur in
the actural run.

Another issue is manual effort for terminality and avoiding explosive size of separation logic
formulae. The statements in the forms of x->n = y and x=y->n increase the size of a logic
formula in the presence of long and even unbounded program paths, such as loops and recursive
functions. Specific folding rules are needed to eliminate variables in the formula. For example,
ls(x, y) * ls(y, z) * ls(z, nil) is replaced by ls(x, nil) if ls(x, nil) = (x = nil)
\lor (\exists y, ls(x, y) * ls(y, nil)) is defined in the analysis of list manipulating
programs. The folding rules differs for different data structures, and people need to write these
rules for their programs.

Last by not least, except for the fragment of linked list [3], decision problem of general separation
logic is not decidable [2]. The limitation of solvers makes the bi-aduction based approaches not
strong as it would be, because some heuristics are introduced to assure that the analysis can
terminate under its time setting.

Reference

[1] Calcagno C, Distefano D, O’hearn P W, et al. Compositional shape analysis by means of bi-
abduction[J]. Journal of the ACM (JACM), 2011, 58(6): 1-66.

[2] Berdine J, Calcagno C, O’hearn P W. Symbolic execution with separation logic[C]//Asian
Symposium on Programming Languages and Systems. Springer, Berlin, Heidelberg, 2005: 52-68.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separation logic. In FSTTCS
2004, volume 3328 of LNCS, pages 97–109. Springer, Dec. 2004.

	Separation Logic in Infer
	Operational Semantics
	Basic Idea
	An Example
	Reference

