
HONG KONG UNIVERSITY OF SCIENCE AND
TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

PHD QUALIFICATION EXAMINATION (PQE)

A Survey on Heap Analysis

Student:
Chengpeng WANG

Supervisor:
Dr. Charles Zhang

October 4, 2020

Abstract

P rogram heap is essentially a mathematical concept, i.e., a set of objects and
a connectivity relation on them. In real-world programs, developers define

various types of data structures and allocate the objects in the heap. Because of
dynamic allocation and flexible heap manipulations, the size of heap-allocated ob-
jects is potentially unbounded and the connectivity relation can be extremely com-
plex, which increase the difficulty of assuring memory safety and understanding
heap-manipulating programs.

Static program analysis, a program analysis technique, achieves satisfactory
performance in many program analysis tasks. Based on abstract state transfor-
mation, program states in actual execution can be approximated without executing
programs. However, the unboundedness of heap and complex connectivity relation
make heap-allocated objects difficult to be abstracted precisely, thus the precision
of clients in static analysis is degraded in the presence of intensive use of heap.
In order to support static analysis clients to analyze program precisely, heap anal-
ysis provides linkage properties about the heap, which reflects the connectivity
relations of objects, such as reachability, ownership, etc.

According to the way to organize heap-allocated objects, existing works can
be divided into two categories. The first category of works concentrate on the
structural heap connected by pointers, while the second category of works focus on
the structural heap organized by containers. Aiming to a particular structural heap,
abstract heap model is established and linkage properties are inferred specifically
by checking satisfiability of constraints or solving a CFL-reachability problem.

To show the impact of heap analysis, applications of heap analysis are intro-
duced. The applications mainly include memory corruption detection, typestate
verification, memory safety verification in multi-threaded programs, and heap-
manipulating program understanding. We hope our survey will shed light on our
future work on heap analysis in certain scenarios, including analyzing structural
heap manipulated in a loop.

1

Contents

1 Introduction 4

2 Background and Preliminary 5
2.1 Heap Allocation . 5
2.2 Linkage Properties in Structural Heap 6
2.3 Points-to Graph . 8
2.4 Heap Abstraction . 9

3 Structural Heap with Pointers 10
3.1 Preliminary . 11

3.1.1 Syntax of Heap Manipulation 11
3.1.2 Abstract Interpretation . 11

3.2 TVLA: TVL based Shape Analysis . 13
3.2.1 Memory Model based on TVL 13
3.2.2 Transformer in TVL . 16
3.2.3 Overhead of Predicate Abstraction 17

3.3 Xisa: SL based Shape Analysis . 18
3.3.1 Memory Model based on SL . 18
3.3.2 Transformer in SL . 20
3.3.3 Disjunctive Clumping . 22

3.4 Summary . 23
3.4.1 Comparison . 23
3.4.2 Applications . 24

4 Structural Heap in Containers 26
4.1 Preliminary . 26
4.2 Flow Analysis . 27

4.2.1 Flow Graph . 27
4.2.2 Ownership Inference . 28
4.2.3 Imprecision of Flow Analysis 29

4.3 Symbolic Heap Analysis . 30
4.3.1 Symbolic Heap Model . 30
4.3.2 Index-Value Correlation Inference 31
4.3.3 Comparison with Shape Analysis 33

4.4 Summary . 33
4.4.1 Comparison . 34
4.4.2 Applications . 34

2

5 Applications 35
5.1 Memory Corruption . 35
5.2 FSM State Error . 35
5.3 Memory Safety of Multi-threaded Program 36
5.4 Heap-manipulating Program Understanding 36

6 Conclusion 37

3

1 Introduction

Software security has great consequences in daily lives. Vulnerabilities can occur in
many real-world software systems, such as the vulnerabilities in monitoring systems
and financial management systems, which can cause aircraft crash and inestimable eco-
nomic loss. Among these vulnerabilities, there are a considerable number of memory
bugs, such as buffer overflow, null pointer dereference, and data race in multi-threaded
programs. In contrast to conventional testing approaches, static program analysis at-
tempts to over-approximate possible program states by not executing programs, and it
obtains satisfactory performance in the analysis of memory issues [1].

Unfortunately, dynamic allocation and manipulation pose challenges in analyzing
heap-manipulating programs [2, 3], in which heap-allocated objects are frequently
used. Firstly, dynamic allocation facilitates creating data structures by statements in
a program instead of variable declaration, therefore the size of the heap is not statically
determinable. Secondly, developers can self-define data structures in real-world pro-
grams, which makes it difficult to analyze heap-allocated objects generally. Thirdly,
heap-allocated objects can be manipulated by statements including pointer operations
and library interfaces, and the forms of the statements are various, which yield points-
to relation inevitably sophisticated. Therefore, the precision of static analysis can be
degraded if precise and expressive heap properties are unavailable.

Heap analysis, at a generic level, provides heap properties to support precise anal-
ysis in static analysis clients. Due to the diversity of heap structure, it is impossible to
apply a general theory to perform the analysis on an arbitrary form of heap with the
best precision. To the best of knowledge, existing works mainly focus on two types
of the heap, both of which are organized and formed into a regular structure. The first
structural heap is organized by pointers forming self-similar structures, such as linked
lists and binary trees. The heap is accessed and manipulated by stack pointers, which
traverse the heap through pointer-valued fields of data structure. The second structural
heap is organized by containers, in which heap-allocated objects are stored in sequence
or according to keys, and it is accessed and manipulated by library interfaces of con-
tainers. In such two structural heaps, it is feasible to obtain precise linkage properties
including but not limited to points-to relation and aliasing. These linkage properties
are important to make top clients more precise.

In this survey, we summarize the works related to these two types of the struc-
tural heap. Section 2 introduces the preliminaries and background of heap analysis.
Section 3 and section 4 review the works related to structural heap with pointers and
containers respectively, and the properties are illustrated with applications. Section 5
discusses the applications of heap analysis, and the conclusion is followed in Section 6.

4

2 Background and Preliminary

In this section, we give an introduction of heap-allocated objects firstly, including heap
allocation and the formed structural heaps. Based on the definitions of the structural
heaps, the inference of linkage properties in structural heaps is formulated, which is the
aim of heap analysis. Points-to graphs and heap abstractions, are discussed to prepare
the preliminaries to model heap in a bounded size.

2.1 Heap Allocation

Memory allocation of programs, such as C/C++ programs, includes two parts, namely
stack allocation and heap allocation. Stack allocation happens on the function call
stack, and the size of allocated memory is known to compiler before the program exe-
cution. Function parameters and local variables are stored on the stack, and the memory
is deallocated when the function call is finished. Different from stack allocation, the
heap-allocated object is managed by programmers rather than compilers. The memory
is allocated during the execution of allocation statements written by programmers, such
as malloc and new in C/C++ programs. Moreover, the memory should be deallocated
manually, such as free and delete statement.

Example 1. Figure 1 depicts an example C program. In the main function, the first two
elements of a linked list are swapped after the creation. The local variables, including
c, e, and p are stored on the stack while the nodes in linked lists, such as e and e→ n
point to, are allocated in heap.

1 t y p e d e f s t r u c t
2 node {
3 s t r u c t node *n ;
4 i n t d a t a ;
5 } L i s t ;
6
7 main () {
8 L i s t * c ;
9 c = c r e a t e l i s t () ;

10 c = swap (c) ;
11 }
12
13 L i s t * c r e a t e l i s t () {
14 L i s t *e , * c ;
15 i n t i , s i z e ;
16 c = NULL;
17 s c a n f (”%d ” , &s i z e) ;

18 f o r (i = 0 ; i < s i z e ; i ++) {
19 e = m a l lo c (s i z e o f (L i s t)) ;
20 e−>d a t a = i ;
21 e−>n = c ;
22 c = e ;
23 }
24 re turn c ;
25 }
26
27 L i s t * swap (L i s t * c) {
28 L i s t *p ;
29 i f (c != NULL) {
30 p = c ;
31 c = c−>n ;
32 p−>n = c−>n ;
33 c−>n = p ;
34 }
35 re turn c ;
36 }

Figure 1: An example of linked list creation and swapping in C

5

1 v e c t o r<F i l e *> v ;
2 f o r (i n t k = 0 ; k <= 1 0 ; k ++) {
3 i f (k % 2) {
4 v . p u s h b a c k (NULL) ;
5 } e l s e {
6 F i l e * a = ma l lo c () ;
7 a−>c l o s e () ;
8 v . p u s h b a c k (a) ;
9 }

10 }

Figure 2: An example of inserting File pointers into C++ STL container

It should be noticed that there are three distinguished features of heap allocation.

• Dynamic allocation: Allocation statements might be executed multiple times in
the loops and recursive functions, thus the size of allocated objects depends on
the number of iterations and might be unbounded.

• Various types of data structure: Types of heap-allocated objects are various
and the linkage between objects are also flexible. Programmers can define spe-
cific data structures by themselves and connect the objects of data structures by
pointers in the way as they like.

• Dynamic manipulation: The ways to allocate heap objects and their linkage are
both affected by the different forms of statements, such as pointer dereference
and library interfaces of containers.

For example, the dereference of e at line 20 in Figure 1 and the push back of vector v
at line 6 and 8 in Figure 2. These three features distinguish heap-allocated objects from
stack variables and make the analysis more challenging.

2.2 Linkage Properties in Structural Heap

In this survey, we restrict heap analysis into a subfield of static program analysis. Static
program analysis aims to reason about the behavior of computer programs without ac-
tually running them [1]. It approximates the actual program behaviors by a domain,
including symbolic domain in symbolic execution and abstract domain in abstract in-
terpretation. Actual program behaviors can be approximated by computing the effect
of each statement in a specific domain.

Due to the complexity of heap, it seems impossible to establish a general heap
model for arbitrary forms of programs. According to the works we surveyed, we ob-
tained an interesting observation as follows.

Observation 1. Heap-allocated objects can form two structural heaps SHP = (E,NP,P,FP)

and SHC = (C,NC,I,FC), in which objects are organized by stack pointers and contain-
ers respectively.

6

More specifically, in Figure 1, the local variable in create list, i.e., the stack point-
ers c and e access the objects allocated in the loop and link them into a linked list.
Similarly, the heap-allocated objects are organized by enumerating the pointers point-
ing to them in a container. This observation sheds light on the inference of linkage
properties of a collection of heap-allocated objects. We can give formal definitions of
two structural heaps as follows.

Definition 1 (Structural heap with pointers). The structural heaps with pointers, de-
noted by SHP, can be formally defined by a 5-tuple (PS,N,E,PF ,RPF).

• PS: A set of stack pointers, which are the entry of structural heap.

• N: A set of heap-allocated objects of the same data type.

• E ⊆ PS ×N: A relation between stack pointers and heap-allocated objects, which
indicates the entry of the structural heap in programs.

• PF ⊆ N ×N: A relation between two heap-allocated objects. It is induced by the
pointer-valued field of heap-allocated objects, which links objects as a connected
component.

• RPF : A restriction on PF such that SHP is self-similar, i.e., for each (n1,n2) ∈ PF ,
the heap-allocated objects reachable from n2 form a structural heap, which can
be represented by a (P′S ∪{ptmp},N′,E′

∪ (ptmp,n2),P′F ,R
′
PF

), where ptmp is an
artifact stack pointers and P′S, N′, P′F and R′PF

are the subsets of corresponding
components in SHP.

Definition 2 (Structural heaps in containers). The structural heaps organized by con-
tainers, denoted by SHC, can be formally defined by a 4-tuple (C,I,N,F).

• C =Cpos ∪Ckey: A set of containers in two categories, i.e., position-dependent
containers and key-dependent containers.

• I: A set of index sets of the containers in C. An index is comparable value, such
as integers and strings.

• N: A set of heap-allocated objects or the pointers which reach heap-allocated
objects.

• F : A set of mappings from an index set I to N′
⊂ N, where the elements of N′

have the same type.

For either of structural heaps, we can get the linkage properties of heap-allocated
objects. According to our survey, the linkage properties for the first structural heap
mainly include:

7

• Reachability of heap-allocated objects, i.e., given a heap-allocated object, whether
it is accessed by moving stack pointer along an access path [4]. It can be for-
mulated by checking the satisfiability of the formula for a first-order logic with
transitive closure, i.e., for a given p ∈ PS, ∃n′ ∈ N,E(p,n′)∧P+F (n′,n), where
P+F (n′,n) is defined as follows

P+F (n1,n2) = (n1 = n2)∨(∃n3,P+F (n1,n3)∧PF(n3,n2))

• Disjointness of two collections of heap-allocated objects [5, 6]. It can be formu-
lated by checking whether N1 ∩N2 is an empty set where N1,N2 ∈ N. In many
scenarios, N1 and N2 are the sets of heap-allocated objects reachable from two
stack pointers.

For the other case, the linkage properties for the second structural heap can be
categorized into these two types.

• Ownership of heap-allocated objects, i.e., whether a heap-allocated object be-
longs to a container [7]. More specifically, an object belongs to a container if
and only if the object is stored in the container explicitly or the pointer which
can reach to the heap-allocated object. It can be formulated by checking whether
∃index ∈ Ic, f (index) = n holds for a given n ∈N, f ∈ F and Ic ∈ I.

• Index-value correlations in containers, i.e., which objects are stored in a specific
position or paired with a specific key [8]. It can be formulated by computing the
value of f (index) for a given f ∈ F , Ic ∈ I and index ∈ Ic and checking whether
the result is equal to a given n ∈N.

2.3 Points-to Graph

In order to describe the memory state, points-to graphs are proposed in heap analysis
to describe the linkage information. The statements which operate on the heap can be
modeled as the transformers on the points-to graphs. The points-to graphs we surveyed
can be mainly categorized into two types, which are utilized to model the structural
heaps discussed in the section .

Points-to graph in SHP is defined as (N,E ∪PF). The nodes in the points-to graph
correspond to the elements in N, which are the heap-allocated objects. The edges con-
nects two heap-allocated objects if a pointer variable in one of them points to the other
object. This type of edges correspond to the occurrence of the pairs in E. Meanwhile,
there are the edges indicating that stack pointers point to the heap-allocated objects,
which correspond to the occurrence of the pairs in PF . All the edges are labeled with a
symbol, i.e., the name of a stack pointer or a pointer-valued field, respectively.

In the example shown Figure 1, the memory state is depicted in the points-to graph
shown in Figure 3. The leftmost edge of which the label is c indicates that the stack

8

n n
012

c

(a) Points-to graph after line 9

n

n 012

c

p

(b) Points-to graph after line 31

Figure 3: Points-to graphs of the program in Figure 1 with the input size = 3

o" o#

v

0 1

…

10

a% a" a# a"%
9pos

Figure 4: Points-to graph of the program in Figure 2

pointer c points to the object of which the data is equal to 2. The edges with n as its
label connects two heap-allocated objects and indicate the linkage information through
pointer-valued field n. It should be noticed that the content stored in the heap-allocated
object can not be modeled in points-to graphs, such as the numeric data in this example.
Here we denote the value in the circle for illustration of functionality only.

Points-to graph in SHC depicts the correlation between the element in the key of
containers and the heap objects it contains. For example, Figure 4 shows the points-to
graph after the loop in Figure 2. The points-to graph displays the correlation of the key
and the heap objects, in which the key is the position of an element.

2.4 Heap Abstraction

As discussed in Section 2.1, the allocation of heap-allocated objects is affected by
the statements and might form into an unbounded size. Therefore it is not capable to
apply points-to graphs to the analysis of the program directly. In order to assure the
soundness, heap abstraction is a necessary and key part of heap analysis. In an abstract
heap, several heap-allocated objects are regarded as a single abstract objects, which
bounds the size of heap-allocated objects. Given a heap abstraction, a points-to graph
discussed in Section 2.3 can be converted into an abstract points-to graph by merging
multiple nodes as a summary node. Heap analysis can be regarded as linkage property
inference based on the effect of statements in an abstract points-to graph.

Compared to a points-to graph without abstraction, an abstract points-to graph must
lost the information to some degrees. For example, the points-to edges among merged
heap-allocated objects do not occur in the abstract points-to graph. Heap abstractions

9

differ in different applications to trade-off between precision and efficiency. Heap ab-
stractions can be based on

• Allocation site: summarizing the heap-allocated objects created by the same
statement [9, 7]. Allocation-site based abstraction is commonly used in the anal-
ysis of Java programs.

• Generic instrumentation predicate: summarizing the heap-allocated objects based
on parametric predicates in the configuration of analyzers [4, 5]. If a collection
of heap-allocated objects satisfy the relation described by the predicates, they are
summarized in the abstract heap.

• Type: summarizing the heap-allocated objects with the same type. It can be
combined with allocation-site based abstraction to obtain a more fine-grained
abstract heap [10, 11].

Heap abstraction is an orthogonal dimension to structural heap in heap analysis.
For a certain form of structural heap, different heap abstractions can be applied, which
is dependent to the kinds of linkage properties and the requirement of precision and
efficiency. In Section 3 and Section 4, we will discuss technical details of abstract heap
based on generic instrumentation predicates and allocation sites, respectively.

3 Structural Heap with Pointers

This section describes linkage properties inference of structural heap with pointers and
its applications. There has been a long history of reasoning about unbounded data
structures connected by pointers. Shape analysis is an evolutionary approach to infer
the linkage properties of structural heap [12]. According to Definition 1 in Section 2,
this type of the structural heap are a self-similar collection of heap-allocated objects,
which are linked by the pointer-valued pointers and take stack pointers as the entry of
heap memory. Typical instances include linked lists and binary trees, of which defi-
nitions are shown in Figure 5. In this section, we discuss how to obtain the linkage
properties of the structural heap, such as reachability and disjointness defined in Sec-
tion 2. Other instances, such red-black trees and sorted linked lists, have the restriction
of data stored in each node, which are in the scope of linkage properties we discuss in
the survey.

In Section 3.1, the syntax of heap manipulation and the basic concept of abstract
interpretation are introduced. Section 3.2 and 3.3 discuss two typical shape analyzers,
including TVLA and Xisa, both of which are based on abstract interpretation. The
applications of properties are discussed in Section 3.4 following the comparison of
TVLA and XISA.

10

s t r u c t L i s t {
L i s t * n e x t ;
i n t d a t a ;

} ;

s t r u c t Tree {
Tree * l e f t ;
Tree * r i g h t ;
i n t d a t a ;

} ;

Figure 5: An example of definitions linked lists and binary trees in C/C++

Address A ∶= NULL ∣ malloc()

StackPtrExpr Ps ∶= p

HeapPtrExpr Ph ∶= Ps → n ∣ Ph → n

PtrExpr P ∶= Ps ∣ Ph

Statement S ∶= Ps = A ∣ Ps = P ∣ Ph = A ∣ Ph = P

Figure 6: Syntax of operations on structural heaps

3.1 Preliminary

3.1.1 Syntax of Heap Manipulation

In a structural heap with pointers, the linkage of heap-allocated objects is manipulated
by pointer statements. The statements are defined by the following grammar in the
Figure 6 as follows. For simplicity, we assume there is no pointer arithmetic opera-
tion and heap manipulation is performed through access paths from stack pointers, i.e.,
accessing heap-allocated objects by the pointer-valued fields recursively. In the gram-
mar, v is a variable and p is a stack pointer. For short, we denote access paths through
pointer-valued fields by heap pointers. Specifically, address includes NULL and the
heap memory location created by malloc(). Stack pointers and heap pointers corre-
spond to two relations in Definition 1, i.e., E ⊆ PS×N and PF ⊆N×N. Ps = A and Ps = P
update the relation E and Ph = A and Ph = P update the relation PF . The statements are
organized in the program structures to perform a specific functionality in the structural
heap, e.g., creating and swapping a linked list shown in Figure 1.

3.1.2 Abstract Interpretation

Abstract interpretation is a theory of sound approximation of semantics of computer
programs, based on monotonic functions over ordered sets, especially lattices [1]. It is
the partial execution of programs and applied to the automatic extraction of information
about the possible execution of computer programs. The concrete domain and abstract
domain are the two key components in abstract interpretation, which are order sets
containing concrete states and abstract states in the program execution respectively.
Transformers in two domains map a concrete or abstract state to another one.

More specifically, let L1 and L2 be a concrete domain and abstract domain. Each

11

Figure 7: Soundness of abstract interpretation

program statement corresponds to a concrete transformer c f , which is the computa-
tion in the actual execution. The concrete transformer is a mapping from L1 and L1

and reflects the effect of program statement in the concrete domain. In order to over-
approximate the program states without actual execution, i.e., cover possible program
behavior, a mapping from L1 to L2, denoted by αc, is defined to abstract concrete states
by an abstract state. Meanwhile, an abstract transformer f transforms an abstract state
to another, which models the effect of a statement in the abstract domain. These two
transformers are both monotonic, i.e., for ∀xc,yc ∈ L1 and ∀x,y ∈ L2, if xc ⊑ yc and x ⊑ y,
then

c f (xc) ⊑ c f (yc), f (x) ⊑ f (y)

For a specific static analysis problem, the definitions of αc and f should satisfy the
following soundness condition:

αc(c f (Sc)) ⊑ f (αc(Sc))

The soundness condition can be depicted illustratively shown in Figure 7. The abstrac-
tion of the concrete state after transforming Sc is approximated by the abstract state
after transforming the abstract state αc(Sc).

A fixed point is obtained by executing all the statements, in a iterative way if there
is a loop or a recursive function. The soundness condition assures that the fixed point
covers all the possible program behaviors. Due to the transformers are the monotonic
functions over the lattices, the finite height of the L2 guarantees the termination of the
computation in the abstract domain. For the abstract domain with an infinite height, the
termination can not be assured without defining a widening operator for acceleration.
The widening operator will be discussed briefly in Section 3.3.

Abstract interpretation is a fundamental theory of many static heap analyses. The
abstract domain is defined to establish an abstract heap model, which tackles unbound-
edness of heap-allocated objects. Meanwhile, an abstract transformer of each statement
in Figure 6 needs to be defined along with the abstract heap model in order to model
the effect of dynamic manipulation. Section 3.2 and 3.3 will discuss two abstract heap
models and the abstract transformers in two typical works.

12

3.2 TVLA: TVL based Shape Analysis

Three Valued Logic Analyzer(TVLA) is an evolving research vehicle for abstract in-
terpretation and naturally suited for checking properties of the structural heap. It is
the collection of a series of works[4, 14, 15]. TVLA encodes the points-to graph by
first-order logic and expresses the properties by first-order logic with transitive clo-
sure(FOTC). In order to guarantee the bounded size of points-to graph to establish
abstract heap model, the truth values are extended by introducing an indeterminate
truth value denoted by 1/2, which the name of TVLA comes from. The logic operators
in TVL are defined as follows.

a ¬a
1 0
0 1

1/2 1/2

a∨b
a

0 1/2 1

b
0 0 1/2 1

1/2 1/2 1/2 1
1 1 1 1

a∧b
a

0 1/2 1

b
0 0 0 0

1/2 0 1/2 1/2
1 0 1/2 1

In this section, we will discuss the details of the TVL based memory model and the
transition of memory state.

3.2.1 Memory Model based on TVL

In TVLA, the points-to graph is encoded by core predicates, which are shown in
Figure 1. The predicate q(v) encodes the points-to edge from stack pointer q to a heap-
allocated objects. The true evaluation of q(v) corresponds to an element in PF . The
predicate n(v1,v2) encodes the points-to edge of two heap-allocated objects connected
by pointer-valued field n. The true evaluation of n(v1,v2) corresponds to an element
in E. It is obvious that it is precise to encode the heap memory manipulated by the
language in the syntax defined in Figure 6 as long core predicates for all stack pointers
and pointer-valued fields are defined.

Table 1: Core predicates in TVL

Predicate Intended Meaning
q(v) Does pointer variable q point to heap-allocated object v?

n(v1,v2) Does the n filed of v1 point to v2?
sm(v) Does element v represent more than one concrete elements?

Example 2. Figure 8(b) shows the truth values of the predicates x(v) and y(v), which
store the point-to information of the stack pointers x and y. More specifically, x(v)
and y(v) both evaluate to 1 when v is interpreted as u, indicating the fact that the stack
pointer variables x and y both point to u1.

13

Figure 8(c) shows the truth values of the predicates n(v1,v2), and it records the link-
age relation of the heap individuals v1 and v2 through the field n of v1. Only n(u1,u2)

and n(u2,u3) evaluate to 1, which reflects the linear structure of the linked list.

n u"#$
x, y n u%

(a) points-to graph

x y
u1 1 1
u2 0 0
u3 0 0

(b) q(v)

n u1 u2 u3

u1 0 1 0
u2 0 0 1
u3 0 0 0

(c) n(v1,v2)

Figure 8: An example of points-to graph and core predicates

Based on the points-to graph, the linkage properties can be expressed by FOTC

formulae, which are instrumentation predicates. Figure 2 shows the common used
instrumentation predicates.

Table 2: Instrumentation predicates in FOTC

Predicate Intended Meaning
is(v) = ∃v1,v2 ∶ n(v1,v)∧n(v2,v)∧v1 ≠ v2 Sharing: Is v pointed by two different objects v1 and v2?

rx(v) = x(v)∨∃v1 ∶ x(v1)∧n+(v1,v) Reachability: Is v reachable from stack pointer x?
c(v) = ∃u ∶ n(v,u)∧n+(u,v) Cyclicity: Is v on a directed cycle?

To summarize the unbounded structural heap, a finite number of unary predicates,
named abstraction predicates, are defined to partition heap-allocated objects into dis-
joint sets. For example, unary instrumentation predicates in Table 2, can be chosen
as abstraction predicates. The heap-allocated objects are summarized into a summa-
rized node in an abstract heap by abstraction predicates if all the abstraction predicates
evaluate to the same truth value over these objects. The finite number of abstraction
predicates guarantees the bounded size of abstract heap.

More specifically, given a set of unary predicates A = {p1, p2, ..., pn}, where pi(1 ≤
i ≤ n) is named as an abstraction predicate, a points-to graph is folded into a more
compact one with summary nodes, named an abstract points-to graph. Specifically, if
v1 and v2 are two heap-allocated objects such that ∀pi ∈ A ∶ pi(v1) = pi(v2), v1 and v2

can be summarized. The predicates related to the summary node evaluate to 1/2 to
over-approximate concrete linkage relation. It can be proven that the set of all abstract
points-graphs is of a bounded size as long as the number of the abstraction predicates
is bounded, which guarantees the finite height of abstract domain.

14

Example 3. If A is set as {x,y,rx,ry}, the abstract points-to graph in Figure 9(a) can
be obtained as the abstract graph of Figure 9(a). It is obvious that x(u2) = x(u3) and
y(u2) = y(u3), so these two objects are summarized into the summary node v2.

After merging u2 and u3 into a summary node w2, n(w1,w2) evaluate to 1/2 to show
that w1 might point to w2. It over-approximates the concrete information that u1 points
to u2 but does not point to u3 in concrete points-to graph.

n
w1 w2

x, y

n

(a) abstract points-to graph

x y
w1 1 1
w2 0 0

(b) q(v)

n w1 w2

w1 0 1/2
w2 0 1/2

(c) n(v1,v2)

Figure 9: An example of abstract points-to graph in TVLA

It should to be notice that the granularity of abstraction depends on the set of ab-
straction predicates A. If more abstraction predicates are added in A, fewer objects
are summarized and abstract points-to graph is less compact. Therefore, less linkage
relation is lost in the abstraction, which makes the abstract domain stores more precise
linkage relation.

Based on the abstract points-to graph, the properties can be checked by evaluating
the FOTC formulae. If the formula evaluate to 1(1/2), the property must(may) hold.
Otherwise, the property must not hold in the structural heap.

Example 4 (Reachability, Cyclicity). In Figure 9(a), w2 is a summary node and has
a dotted self-cycle. Based on the definition of c(v), it is easy to get the truth value of
c(w2) to 1/2, which matches the fact shown by dotted self-cycle of w2. Similarly, based
on the definition of rx(v), it is easy to compute rx(w1) as 1 and rx(w2) as 1/2, which
indicate the fact that x must reach the heap-allocated object abstracted by w1 and may
reach the heap-allocated object abstracted by w2 respectively.

Example 5 (Aliasing). Based on core predicates in Table 1, other heap properties can
be self-defined. Two pointers, i.e., p and q, are aliased if they point to the same heap
cell. Aliasing can be encoded by ∃n ∶ p(n)∧q(n).

15

3.2.2 Transformer in TVL

As discussed in Section 3.2.1 , the truth values of the core predicates determine the
abstract memory state uniquely. Therefore, the transformers of states in abstract heap
model can be defined by the predicate-update formulae. As long as the values of core
predicates after the statement are computed, the new abstract points-to graph are ob-
tained.

Consider the statement x = x→ n for an example, the predicate-update formula of
the core predicate x(u) is x′(u) = ∃v ∶ x(v)∧ n(v,u). Other core predicates are not
updated, because no edge except the points-to edge starting from x is changed in the
heap state transformation.

One difficulty is that in the cases where the some edges are uncertain. More specif-
ically, the predicate-update formula might evaluate to to 1/2 over some objects, which
means that the corresponding core predicate has the indefinite value, which blurs the
truth of point-to relation in points-to graph. To obtain higher accuracy, Mooly Sagiv
and Thomas Reps proposed two additional operations and combine them into a trans-
former, namely focus and coerce[4].

Focus operation assures the predicate-update formula evaluates to a definite value,
and is guided by a set of focus formulae related to the statement. For example, if we
consider the statement y→ n= x→ n, the set of focus operation is {∃v ∶ x(v)∧n(v,u),∃v ∶
y(v)∧n(v,u)}. If either has the value of 1/2, the node will be split, which yields logic
structures representing disjoint abstract states, and then performs a precise update, i.e.,
strong update, upon them based on the predicate-update formula respectively.

Coerce operation removes the impossible logic structures based on the patterns of
inconsistencies. For example, the summary nodes can not make the unary predicates
in the form of rx evaluate to the definite values. Additionally, the correlations between
the abstract predicates provide several useful patterns of inconsistencies. If an incon-
sistency occurs, the logic structures should be removed, or the summary node should be
reduced to a concrete heap-allocated object and the summary edge should be deleted.
The details of focus and coerce are discussed in section 6.3 and 6.4 in [4] and and more
details are not discussed in the survey.

Example 6. Figure 10 shows an example of state transition at the statement x = x→ n.
The abstract predicates are {x,y,rx,ry}. The predicate-update formula of x = x→ n is
x′(v) = ∃v1 ∶ x(v1)∧n(v1,v), and the set of focus formulae is {∃v1 ∶ x(v1)∧n(v1,v)}.
S0 is split into three logic structures S1,0, S1,1a and S11b, and the union of the con-
crete memory states they contain are equal to those which S0 represents. Based on the
predicate-update formula, strong updates can be performed respectively. In the phase
of coerce operation, S2,0 is removed, for the value of rx(u2) is 1 while u2 in not in the
transitive closure of x in the graph. The uncertainty in S2,1a and S2,1b is removed based
on the basic patterns discussed above in a similar way.

For each statement in the program, a transformer is constructed in the above way,

16

!" !#
n

n
x,y

!" !#

n
x,y

!" !#
n

n
x,y

!" !#
n

n
x,y

!$

n
n

n

!" !#
n

n
y x !" !#

n

n
y

!$

n
n

n

x

%& ' = ∃'": % '" ⋀,('", ')

!" !#

n
x,y

!" !#
ny

x

!" !#
ny !$

n
nx

coerce

focus

update formula

01

0",1 0","2 0","3

0#,1 0#,"2 0#,"3

0$,1 0$,"2 0$,"3

Figure 10: An example of state transition

and constraint solvers are invoked to update the truth values of predicates in each trans-
formation. Due to the bounded size of abstract domain, a fixed point can be obtained by
applying the transformers. The fixed point covers all the possible points-to graphs and
over-approximates the program behaviors. The properties of structural heaps can be
obtained by checking the values of instrumentation predicates, which has been shown
in Figure 4.

3.2.3 Overhead of Predicate Abstraction

TVLA is a general framework suited for checking properties of heap-allocated objects
based on predicate abstraction. The users encode the properties by FOTC formulae and
evaluate them in the abstract points-to graph after the fixed-point reaches, which makes
TVLA extensive.

The time cost in state transformation makes TVLA inefficient. Some of the instru-
mentation predicates are used as abstraction predicates, such as rx and cn, and they
should be updated in each transformation. A simple and straightforward way is to
evaluate the instrumentation predicates based on their definitions and the latest values
of core predicates. However, it is time consuming due to the time cost brought by the
constraint solving in the process. In the work [16], a finite differencing-based approach

17

< assert >∶∶=emp empty heap

∣ < exp >→< exp > singleton heap

∣ < assert > * < assert > separating conjunction

∣ < assert > −* < assert > separating implication

Figure 11: Assertions in separation logic

is proposed to reduce time overhead.
The heap abstraction in TVLA depends on the abstraction predicates, thus the se-

lection of the abstract predicates affect the precision of TVLA. Fewer abstraction pred-
icates are used, more heap-allocated objects are likely to be merged which yields more
loss of points-to edge, thus weaker properties are generated. However, excessive ab-
straction predicates make the space of points-to graphs explosively large, in which the
nodes have 3∣A∣ possibilities. Even if the number is finite and termination of analysis
is guaranteed, the heavy burden of time cost, caused by formula update in the state
transformation, prevents it from analyzing large functions in real-world programs.

3.3 Xisa: SL based Shape Analysis

TVLA updates the abstract heap in a global way, i.e, when a transformer updates the
points-to edge of a node, it requires the updating of the values of instrumentation pred-
icates, which depends on the whole heap. A single cell might effect the values of many
instrumentation predicates. However, a specific transformer only alters the linkage
relation near the objects it manipulates. According to this observation, another lead-
ing shape analysis is proposed to perform a local reasoning about the heap based on
Separation Logic(SL).

The assertions expressed in separation logic are listed in Figure 11. emp represents
empty heap, in which no object is allocated. e→ e′ asserts that the heap contains one
cell, at address e with contents e′. p1 *p2 asserts that the heap can be split into two
disjoint parts in which p1 and p2 hold respectively. p1−*p2 asserts the fact that p2 will
hold in the heap extended from the current heap and a disjoint part in which p1 holds.
Separating conjunction and implication make the separation logic naturally suitable for
the local reasoning of heap [17, 18].

There are several typical works on SL based on shape analysis [6, 11, 19], including
Xisa, Sling and Infer. This section give an introduction of Xisa to illustrate how to
analyze the structural heap from a collection of objects in isolation [6, 20, 21, 22].

3.3.1 Memory Model based on SL

In order to describe the heap much in an isolated manner, inductive predicates over
separation logic are defined to describe the linkage relation in the collection of heap-

18

allocated objects. For example, the inductive predicate list(α) is defined to describe
the structural heap storing a linked list as follows:

list(α) ∶= (α = null)∨((α ≠ null)∧(∃β ∶ α → β ∧ list(β)))

Similarly, for the structural heap storing a binary tree, the inductive predicate tree(α)

can be defined as follows:

tree(α) ∶= (α = null)∨((α ≠ null)∧(∃β γ ∶ α → β ∧α → γ ∧ tree(β)∧ tree(γ)))

α , β and γ are the symbols in N and PS in Definition 1. It is obvious that the points-
to edges in a component of a separating conjunction are abstracted in the inductive
predicates. By combining the inductive predicates to form a separating conjunction,
the linkage properties of local heap yield a global property of large heap.

In the work [6], Chang and Rival observe that the checking functions in the program
can guide heap abstractions. The checking function is originally designed for testing
or dynamic analysis and reflects the intention of the developers, and it is the actual
properties which the developers suppose the program should hold at some points.

For example, in the program shown in Figure 12, all the nodes in the list l are
blue nodes at the entry of make all purple and the function colors all the nodes purple.
The checking function bluelist and purplelist in the assert statement check whether the
nodes accessed by their parameters are in blue or purple respectively. This property
reflects the intention of the developers that the nodes of the linked list l are colored in
purple if they are all in blue initially. It provides an inspiration to establish the abstract
heap model by splitting the heap based on the definition of two assert statements.

The inductive predicates corresponding to the checking functions are as follows:

bluenode(α) = α is blue

bluelist(α) ∶= (α = null)∨((α ≠ null)∧(∃β ∶ α → β ∧bluenode(α)∧bluelist(β)))

where α and β are the symbols of heap memory locations. The predicate purplelist(α)

can be defined similarly. Figure 12 shows an example of heap abstraction based on the
checking function bluelist. The bold edge in Figure 12(b) shows a collection of heap-
allocated objects which satisfy the inductive predicate bluenode(α).

To express the state of entire heap, several inductive predicates are combined to-
gether in a separating conjunction Ai, then the abstract memory can be easily estab-
lished by a finite disjunctions as follows:

< A1;P1 > ∨...∨ < An;Pn >

Each disjunction represent a specific case of structure Pi is a pure formula of pointers.

Example 7. Consider the list l which assures that the checking result of bluelist(l) is
true. The memory region which stores the list l is shown in Figure 11(a). It can be
described by the logic formula as follows:

bluelist(l) ∶=< emp; l = null > ∨ < (l.next → l′) * bluelist(l′); l′ ≠ null∧blue(l) >

19

It should be notice that inductive predicates used to form separating conjunctions
can be defined according to other specifications [5, 19], including the definition of data
structure. The process of defining inductive predicates requires manual efforts in most
scenarios, and there are several works on the automatic generation of heap abstraction
template [23].

1 t y p e d e f s t r u c t L i s t {
2 Labe l c o l o r ;
3 L i s t * n e x t ;
4 } L i s t ;
5 boo l b l u e l i s t (L i s t * l) {
6 i f (l == n u l l) re turn t r u e ;
7 e l s e re turn (l−>c o l o r == b l u e)
8 && b l u e l i s t (l−>n e x t) ;
9 }

10 boo l p u r p l e l i s t (L i s t * l) {
11 i f (l == n u l l } re turn t r u e ;
12 e l s e re turn (l−>c o l o r == p u r p l e)
13 && p u r p l e l i s t (l−>n e x t) ;
14 }

15 void m a k e a l l p u r p l e (L i s t * l) {
16 L i s t * c u r = l ;
17 L i s t * l a s t = n u l l ;
18 whi le (c u r != n u l l) {
19 a s s e r t (b l u e l i s t (c u r)) ;
20 m a k e p u r p l e (c u r) ;
21 l a s t = c u r ;
22 c u r = cur−>n e x t ;
23 }
24 a s s e r t (p u r p l e l i s t (c u r)) ;
25 }

Figure 12: An example of checking function of linked lists in C

…
…

!

"

#

$

next

next

next

(a)

∨

" #
" ¹ null

" = null

emp

"
bluelist

next bluelist

: =

(b)

Figure 13: Memory abstraction based on checking functions in Figure 12

3.3.2 Transformer in SL

To reflect memory updates in the graph, Xisa simply modifies the appropriate points-
to edges in the points-to graph. Based on the SL based abstract memory model, the
statements defined in Figure 6 act on a component of a separating conjunction, i.e.,
Xisa supports the local reasoning. The soundness is guaranteed by the frame rule in
SL [18].

When the points-to edge is in a component of a separating conjunction, the objects

20

bluelist

l, cur

bluelist

l, cur

next

l, cur

∨=

Figure 14: An example of unfolding

in the component abstracted by an inductive predicate are materialized by unfolding
the definition of an inductive predicate so that the points-to edge can be exposed. Un-
folding can be regarded as a reverse process of the memory abstraction, in which the
component is replaced by the points-to edges and a smaller component abstracted by
the same predicate [6].

Example 8. Figure 14 shows the example of unfolding the list l. Assume that the list
l is not an empty list. We can notice that there is a deference of cur at line 22 in
the function make all purple. According to the definition of the checker edge labeled
bluelist as above, the unfolding can yield two disjunctives. After the unfolding, these
two disjunctives can be updated by coloring the color of objects cur points to by purple.

Widening Different from TVLA, the termination of Xisa can not be assured di-
rectly. Although unfolding permits strong updates in the abstract domain, potentially
infinite use of the unfolding operator increases to the points-to graph to an unbounded
size. For example, Figure 15 shows the possible points-to graphs at the beginning of
the first four iterations. As the iteration continues, more point-to edges labeled next
are generated, which makes it is impossible to use a formula of separation logic with a
finite number of existence quantifications. Moreover, the number of disjunctives can be
unbounded, thus we can not find the finite number of formulae to describe the abstract
heap state. These two problems make the analysis terminable in the presence of the
loop and recursive functions.

bluelist

l, last

next

cur

bluelist

l

next next

cur

bluelist

l, cur

last

bluelist

l

next next

curlast

next

Figure 15: Points-to graphs at the loop entry in the first four iterations

To guarantee the termination, widening operator in the abstract interpretation should

21

be instantiated. The basic idea of widening in Xisa derives from the fact that the in-
ductive predicate abstracts the points-to edges in the disjunctive generated by unfold-
ing. This means that the disjunctives can be merged into a single one by summarizing
the points-to edges by an inductive predicate. Figure 16 shows the widening operator
over the abstract heap memory after line 20 in the first two iterations. The edge la-
beled purplelist contains the union of the concrete states represented by l = last and
l → next = last. The detailed definition of widening is given in Section 4.2 in [6] and
is not gone further discussion in the survey.

bluelist

l, last

next

cur

l

bluelistnext

cur

bluelist

l

next next

curlast

last

purplelist

Δ

=

Figure 16: An example of widening

At last, the termination can be assured when there are a finite number of inductive
predicates. The edges in the abstract points-to graph have finite possibilities, so there
are a finite number of possible disjunctives, which assure the boundedness of abstract
domain is bounded.

Example 9 (Reachability). Figure 16 shows that the stack pointer l can reach the heap-
allocated objects that last points to. Moreover, the inductive predicate purplelist indi-
cates that the objects between them are both in purple.

3.3.3 Disjunctive Clumping

Disjunctive explosion Although the number of disjunctives is finite, it is memory-
consuming if all the disjunctives are maintained. To reduce the space complexity,
Huisong proposes the clumping of several similar disjunctives d ∶= m∨ ...∨m into an
abstract points-to graph in a coarse granularity [22], where m ∶= p*...*p.

The disjunctives of d are sorted into abstract states m0, ...,mn, such that all the
abstract states in mi are similar. The similarity is measured based on the silhouette,
which stores the structural order encoded in the regular expression. The similar abstract
states which have similar silhouette are merged into one abstract state.

Example 10. Figure 17 shows an example of the clumping of the binary trees. The
silhouette extracted from the abstract shape graph records the relative locations of the
cursors x, y, and t. s1, s2 and s3 all record the fact that the height of the node which t
points to is not smaller than the height of the node x points to and the similar relation
between x and y. The three silhouettes can be merged into the silhouette shown in (b),
and m1, m2 and m3 are clumped into the weakened abstract state in (c).

22

�
	����� ���� ����� ������� ���� ����� ���
�����

(a)

(b) (c)

Figure 17: Semantic clumping of abstract states [22]

It should be noticed that the silhouette is another heap representation different from
the logic based heap abstraction. It focuses on the relative position of stack pointers
in the structural heap and might be applied to get more scalable heap analysis of the
program with a specific form of structures, such as loops and recursive functions.

3.4 Summary

3.4.1 Comparison

Predicates play an important role in heap abstraction of shape analysis in the framework
of abstract interpretation. However, TVLA and Xisa establish the abstract memory
model from two different aspects. In TVLA, the heap is encoded by core predicates
q(v) and rx(v) and the abstract heap is established based on predicate abstraction. In
Xisa, the heap is split into disjoint components and the combination of the properties
of the components describes the heap property, which is a separating conjunction of
inductive predicates in separation logic. The different views in memory abstraction
distinguish them in terms of generality, usability, and efficiency.

Generality TVLA is more general than Xisa. Instrumentation predicates are de-
fined to track the heap properties of interest, which is not limited to be linkage proper-
ties. For example, it can be extended to infer the ordering properties in a sorted linked
list when the predicate for order relation is defined. Different form TVLA, Xisa takes
advantage of checking functions to form inductive predicates. Although it is more
program-specific abstraction, it can not store points-to edges as precisely as TVLA,

23

because the points-to information in each component is blurred.
Usability The natural difference between two methods of abstraction is that the

heap predicates in TVLA and Xisa are in different levels of abstraction. The abstract
predicates in TVLA take advantage of low-level and generic relations, such as con-
cerning reachability. They should be specified as the prerequisites of the analysis, thus
the precision is highly dependent on expert knowledge. In contrast to TVLA, Xisa is
based on the checking functions in the source code and does not depend on the expert
guidance for abstraction. However, Xisa might perform not well due to the impre-
cise memory abstraction when the checking functions are not available. In this case,
inductive predicates might have to be defined based on types of data structure.

Efficiency Due to the advantages of separation logic in local reasoning, Xisa out-
performs TVLA in terms of efficiency. Meanwhile, the techniques, such as semantic
clumping [22], can merge the similar disjunctives and simplify the abstract memory
state efficiently, which can cut down the total time cost in the transition of each disjunc-
tive. In contrast, the state transition in TVLA suffers a heavy burden of time because
the predicate updating is time-consuming in spite of the optimization [16]. The inter-
esting thing is that TVLA does not need widening operator while the time cost in Xisa
mainly comes from widening operation, while this advantage does not outperform the
one brought from local reasoning in separation logic.

At last, TVL and SL are two orthogonal of logics and there is a work to combine
them for more precise structural heap model. In the work [24], SMASLTOV exploits
the infrastructure of TVLA and uses unary domain predicates to pick out regions of
the heap that are of interest in the state that a logical structure models. To the best
of knowledge, it is the only work which combines these two logics and connects the
TVLA community and separation logic community.

3.4.2 Applications

The applications of structural heap with pointers have a wide range of applications,
including memory bug detection, concurrent program verification and automatic par-
allelization. In this section, we discuss two applications based on reachability and
disjointness respectively. Section 5 will discuss more applications.

Memory leak detection is one of the applications of reachability. If the heap-
allocated objects are not reachable from any of stack pointers, the objects should be
freed immediately. Otherwise, memory leak detection occurs. Figure 3.4.2 shows
the example of linked list traversal in C program. Based on the heap analyzer, such as
TVLA, it can be concluded that the heap object represented by the red node in Figure 19
is not reachable from x and y. Due to the lack of free statement, a memory bug occurs
in this example.

24

1 i n t main () {
2 L i s t * y = c r e a t e L i s t () ;
3 L i s t * t = NULL;
4 whi le (y != NULL) {
5 t = y−>n ;
6 y = t ;
7 }
8 re turn 0 ;
9 }

Figure 18: An example of linked list traversal in C program

n n n

y t

(a)

Figure 19: Points-to graph after the first iteration

Concurrent program verification benefits from the disjointness. More specifi-
cally, if two threads access disjoint heap regions, there must not be no data race bug.
Moreover, the threads can be parallelized if the heap regions accessed are disjoint. For
example, the heap-allocated objects reachable from x and y are disjoint in Figure 20,
therefore the computation in two threads does not count a node in the binary tree more
than one time, and the parallelization is safe.

1 void c n t T r e e (Tree * r o o t) {
2 Tree * x , y ;
3 i f (r o o t != NULL) {
4 x = r o o t −> l ;
5 y= r o o t −>r ;
6
7 auto h a n d l e = async (l a u n c h : : async , c n t T r e e , y) ;
8 i n t nx = c n t T r e e (x) ;
9 i n t c o u n t = nx+ h a n d l e . g e t () + 1 ;

10
11 re turn c o u n t ;
12 }
13 re turn 0 ;
14 }

Figure 20: An example of counting the nodes in a binary tree by two threads

25

4 Structural Heap in Containers

This section discusses property inference of structural heap with containers. Accord-
ing to Definition 2, it has two major differences compared with the structural heap in
Section 3. Firstly, objects are organized by a mapping F that maps the key to the value
its stored, and the key set contains comparable elements for indexing. Secondly, in-
stead of manipulating structural heap by pointer operations directly, the manipulation
of containers, including add and get operations, are performed by invoking a handful
of library interfaces, such as push back and the index operator. These two differences
make us concern different properties in this structural heap from the one with pointers
and they create challenge to establish the unified model for various types of containers.

In this section, we discuss how to obtain the properties of the structural heap,
namely ownership and index-value correlation defined in Section 2. Section 4.1 cat-
egorizes the containers from client slides. Section 4.2 and 4.3 introduce property in-
ference based on two memory model. At last, the comparison and the applications are
appended and discussed in Section 4.4.2.

4.1 Preliminary

According to the definition in the Dictionary of Algorithms and Data Structures [25],
the container, i.e., abstract data type, is a set of data values and associated operations
that are precisely specified independent of any particular implementation. The im-
plementations of containers can be based on the manipulation of structural heap in
Section 3, and they are used through the interfaces from the client-side. For exam-
ple, a C++ STL map can be implemented by organizing its key set based on a binary
search tree. However, the underlying implementation details are not the concerns of
the users, and they do not affect the understanding the contents of containers as long
as the library interfaces of containers are implemented according to the same speci-
fication. The specification provides the information that whether the content is read
from or written to the container, therefore the ownership can be obtained based on the
specification of library interfaces.

Another important observation is that the containers, from the client-side, can
be be divided into two categories, namely position-dependent containers and value-
dependent containers.

• Position-dependent containers It stores the values sequentially, which defines
the correlation of positions and values. In the structural heap, the values can
be heap-allocated objects or their pointers. In C++ STL library, the position-
dependent containers include vector, list, stack, queue and deque.

• Value-dependent containers It stores the values according to the keys, which
defines the key-value correlation. In the structural heap, the comparable keys
correspond to the heap-allocated objects or their pointers. In C++ STL library,

26

the value-dependent containers include set, map and their variants including
multi set and hash map.

From the view of program analyzers, position-dependent containers can be regarded
as a special case of value-dependent containers, and the position-value correlation and
key-value correlation, which are two specific properties in the two types of contain-
ers, can be generalized by index-value correlation. Based on this observation, it is
promising to provide a per-element understanding of container contents by analyzing
index-value correlation.

v e c t o r<A*> v ; / / o0
A* a = new A () ; / / o1
v . p u s h b a c k (a) ;
A* c = v . back () ;

map<s t r i n g , S*> s c o r e s ;
u [” A l i c e ”]=new S (9 0) ;
u [”Bob”]=new S (8 0) ;

Figure 21: An example of two types of containers in C++

Example 11. Figure 21 shows the examples of a position-dependent container and
value-dependent container. The index-value correlation implies that: (1) a and c points
to the same heap-allocated object. (2) The score of Alice is 90 and the score of Bob is
80.

Compared with ownership, index-value correlation provides more precise proper-
ties because it reflects the layout of the storage in the containers. Section 4.2 and 4.3
discuss the inference of ownership and index-value correlation, which are based on
flow graph and symbolic heap respectively.

4.2 Flow Analysis

According to the definition of ownership in Section 2, the ownership is determined by
the objects flowing in and out of the container. Therefore, the ownership inference can
converted into a graph reachability problem if the graph tracks the objects flow in the
program.

4.2.1 Flow Graph

Despite of the variety of container instances, the library interface can be regarded as
one of these three types of operations, namely allocate, load and store, which trigger
the object flow of the container. The objects are abstracted based on allocation-site
abstraction, which is also common used in pointer analysis in Java programs [9]. Based
on this heap abstraction and the semantics of library interfaces, the flow graph can be
constructed to model the flow in and out of the containers [7].

Definition 3 (Flow Graph). Flow graph G = (Vc∪Vn,E) encodes object flow caused by
library interfaces of containers.

27

• Vc and Vn model the abstract memory of the containers and the content of con-
tainers respectively. Each container c corresponds to vc ∈Vc. And if a container
is the element of a nested container, there is also a corresponding node in Vn.

• E models the semantics of library interfaces to record the object flow. Based on
the effect of library interfaces, the edge is added between a container and another
object. Table 3 shows typical library interfaces and their edges in the flow graph.

Table 3: Edges in flow graph modeling interface semantics

interface semantics edge in flow graph
vector < A∗ > v allocate o

new
ÐÐ→ v

A∗a = new A() allocate o
new
ÐÐ→ v

v.push back(a) store a
store
ÐÐ→ v

v[i] = a store a
store
ÐÐ→ v

A∗a = v.back() load v
load
ÐÐ→ a

A∗a = v[i] load v
load
ÐÐ→ a

Example 12. Figure 22 shows the flow graph of the first code snippet in Figure 21. The
interfaces push back and back perform a store and load operation on the container v
respectively, which is allocated at line 1.

o1 anew

v

store

o0
new

Figure 22: Flow graph of the first code snippet in Figure 21

4.2.2 Ownership Inference

In this section, it is assumed that containers can store heap-allocated objects directly or
their pointers. A heap-allocated object belongs to a container if they are contained in
the container or their pointers are stored. Based on the flow graph constructed in Sec-
tion 4.2.1, ownership inference can be formulated by a special reachability problem in
a flow graph. The ownership is determined by the statements in a sequence and edges
in the flow graph are labeled based on semantics, therefore the sequences of the labels
establish the ownership and the effect of the statements. According to this observation,
it can be found that ownership can be discovered by solving a CFL-reachability prob-
lem, i.e., searching all the reachable paths in which the sequence of labels belongs to a
context-free language. In the ownership inference problem, the context-free grammar
is defined as follows [7].

28

Definition 4. The context-free grammar in the formulation of ownership inference is
G = (V,Σ,R,S), where the set of nonterminal character V = { f lowsTo,ownership}, the
finite set of terminals Σ={new,assign,store, load}, and the start variable S=ownership.
The production rule R is defined as follows.

f lowsTo → new (assign ∣ store load)∗

ownership → ε

ownership → f lowsTo store f lowsTo

A pointer a points to a object o1 if the sequence of labels in the path which begins
with o1 and ends with a can be derived from flowsTo. In the third production rule,
f lowsTo is a reverse language in which the sentences are derived from f lowsTo. After
searching all the pairs of the nodes in a flow graph, we can filter the pairs of which
the corresponding sentences are derived from ownership and then the ownership is
obtained.

o1 anew

v

store

o0
new

ownership

flowsTo

flowsTo

Figure 23: An example of CFL-reachability in flow graphs

Example 13. Based on the context-free grammar in Definition 4, we can figure out
three paths shown in Figure 23. According to the first production rule, there is a flowsTo
path from o1 and a indicating that a points to o1. Similarly, v points to the inside objects
of the container. According to the third production rule, there is a ownership path from
o0 to o1, which indicates that o0 contains o1. For nested containers, the ownership can
be obtained due to the transitivity of the third production rule.

4.2.3 Imprecision of Flow Analysis

Although CFL-reachability problems can be solved at a considerable cost, flow graphs
are not expressive enough to model control structure precisely. Firstly, the statement
order is blurred in the flow graph. If there are more than one store operations, the object
loaded out of the container can not be determined precisely. Secondly, flow graphs only
record the operations, while path conditions and control structure including loops are
not encoded. The flow and path insensitivity degrades the precision of flow-in and
flow-out information obtained based on ownership.

29

1 v e c t o r<A*> v ; / / o0
2 v . p u s h b a c k (new A ()) ; / / o1
3 f o r (i n t i = 0 ; i < N; i ++) {
4 A* p = new A () ;
5 v . p u s h b a c k (p) ;
6 }
7 A* c = v . f r o n t () ;
8 c o u t << c−>d a t a << e n d l ;

Figure 24: An example of storing elements in a container within a loop

Example 14. Figure 25 shows the flow graph of the program in Figure 24. Due to the
statement order is blurred in the flow graph, we can only get the fact that o1 and o2 flow
in o0, thus c points to o1 or o2, whereas the second case is spurious.

o1 a

b

new

new

v

store

store

o0
new

ownership

ownership

o2

Figure 25: An example of flow graphs blurring statement order

4.3 Symbolic Heap Analysis

This section summarizes a symbolic heap model for containers and introduces how
to infer index-value correlation based on the model. At the end of the section, the
comparison of the symbolic heap and the abstract heap in Section 3 is discussed to
illustrate the relationship between the analysis of the two types of structural heaps.

4.3.1 Symbolic Heap Model

According to Definition 2, a container is essentially a mapping from a key set to a
value set. Therefore, a container can be modeled as an abstract location, in which the
elements are distinguished by a function converting a key to an index [26, 8]. More
specifically, the function is exactly identity function for position-dependent containers,
as the key and the index are both the position of the values in the containers. For value-
dependent containers, the function is invertible uninterpreted, which is used to establish
the correlation between key and values. Based on this abstraction, a symbolic heap

30

model can be constructed to model the heap-allocated objects organized by containers
and the operations in the heap.

In the symbolic heap model, a container is encoded by an abstract value set θ =

{(πk,φk)}, which is a set of the pairs of an abstract value π and a constraint on index
variables φ .

• Abstract value π is the abstract location corresponding to the element of N or
C in Definition 2. The abstraction is based on allocation site, and the allocation
sites in each iteration of the loop are distinguished by a loop counter.

• A constraint on index variables φ encodes the content in abstract locations. It
establishes the correlation of the abstract locations and the values at a certain
position or with the same key in the container.

Figure 26 shows a general symbolic heap model for containers. X is an abstract
value representing a container, and Y is an abstract values representing containers or
the memory created in a loop. i1 and i2 are the index of the containers or the loop
counter. The container can be encoded by < X >i1= {(o0,φ1(i1)),(<Y >i2 ,φ2(i1, i2))},
and the symbolic heap represented in this form depicts index-value correlation directly.

o"

< X >&'

()(+))

< Y >&.(/(+), +/)

Figure 26: A symbolic heap model for containers

4.3.2 Index-Value Correlation Inference

Based on the symbolic heap, the index-value correlation can be obtained by finding
all the feasible edge for a given index variable, therefore the symbolic heap at each
program point needs to be computed according to the statement semantics.

Specifically, an abstract semantics of an operation is a transformation of an abstract
value set θ . For the load operation, such as f ront and a = v[i], it retrieves the abstract
value by checking the satisfiability of each constraint based on the key in the operation.
For the store operation, such as push back and v[i]= a, it manipulates the abstract value
set by updating the constraints of index variables and adding a new abstract value pair.

Figure 27 shows a symbolic heap of the program in Figure 24. The details of load
and store operations are illustrated in the next two examples.

Example 15 (Load operation). For the statement A∗a = v[1], the loaded object can be
obtained by searching along the edges with feasible constraints. In the symbolic heap,
two edges from < v >vi induce two invocations of a constraint solver.

31

o"

< $ >&'1 ≤ *+ ≤ ,
⋀ *.= *+ − 1

< v >23
*+ = 0

Figure 27: The symbolic heap of Figure 24

In the first invocation, i1 = 0∧ i1 = 1 is checked and determined as an unsatisfiable
formula in integer theory, which means that a does not point to o0. In the second
invocation, 1 ≤ i1 ≤ N ∧ i2 = i1−1 ≤ i1 = 1 is checked. It is a satisfiable formula and the
solution is i1 = 1∧ i2 = 0. Based on the result, a is equal to the pointer which points to
the heap-allocated object in the first iteration of the loop.

1 f o r (i n t j = 0 ; j < v . s i z e () ; j ++) {
2 i f (j % 2 == 0) {
3 v [j] = NULL;
4 }
5 }

Figure 28: An example of storing elements of a container

Example 16 (Store operation). Figure 28 shows an example of updating the content of
containers by store operations. The constraint of store operation is i1%2 = 0, where the
literal i1 corresponds to the loop counter j. Similar to load operation, the constraint
labeled in each edge from the container v is conjuncted with the negation of constraint
of indexed variable yielding the new constraint in the original abstract value pair. At
last, a new abstract value pair (NULL, j%2 = 0) is added to the symbolic heap.

After the transformations, the symbolic heap is shown in Figure 29, which can be
expressed as follows.

θ = {(o0, i1 = 0 ∧ i1%2 ≤ 0), (NULL, i1%2 = 0),

(< α >i2 , 1 ≤ i1 ≤N ∧ i2 = i1−1 ∧ i1%2! = 0)}

< " >$%1 ≤ () ≤ * ⋀ (, = () − 1 ⋀ ()%2 ! = 0

< v >45

NULL()%2 = 0

Figure 29: The symbolic heap of Figure 28

32

It should be noticed that Example 15 and 16 do not explain the details related to
value-dependent containers. The difference is that an invertible uninterpreted function
m is involved in the invocation of constraint solvers. Technically, the index-value cor-
relation can be inferred for value-dependent containers by simply feeding the following
axiom to the solver

∀k1,k2 ∈ I,k1! = k2→m(k1)! =m(k2)

4.3.3 Comparison with Shape Analysis

The core insight of symbolic heap analysis is that the concrete objects updated by a
statement can be abstracted by the indexed constraints and the flow sensitivity is as-
sured. This is similar to shape analysis based on abstract interpretation in Section 3,
which also infers a flow-sensitive heap properties. However, there are several differ-
ences between them.

Firstly, symbolic heap analysis discussed in this section concentrates on analyzing
the contents and client-side uses of these data structures, while the shape analysis aims
to verify the implementations of data structure. In shape analysis, the heap-allocated
objects are of the same type and they are abstracted based on linkage properties rep-
resented by some instrumentation predicates. In contrast, containers might form a
hierarchical heap structure which contains different types of objects. A container is
partitioned and abstracted according to the constraint on index variables. This abstrac-
tion can be applied to other data structures, such as arrays and strings. Therefore,
symbolic heap analysis is complementary to shape analysis and capable of reasoning
points-to target in various data structures [27].

Secondly, bracket constraints are proposed to perform an over-approximation and
under-approximation of the heap simultaneously to deal with the uncertainty caused by
complex branch conditions in the program [28]. In TVLA framework, the uncertainty
of linkage property is dealt with the intermediate value 1/2, and disjunctives of three-
valued logic structures are generated to get precise may and must points-to edge [4].
Compared with disjunctives of three-valued logical structures, bracket constraints in
symbolic heap analysis achieve the same precision as the disjunctives of three-valued
logical structure. However, symbolic heap analysis reasons about only one abstract
heap per program point, which delays reasoning the disjunctives until constraint solv-
ing, thus the scalability is promising with the benefit of the optimization of a constraint
solver in the satisfiability checking [26].

4.4 Summary

This section summarizes the difference of ownership obtained by flow analysis and
index-value correlation obtained by symbolic heap analysis. The applications are dis-
cussed at the end, which include taint analysis and typestate analysis.

33

4.4.1 Comparison

Flow analysis and symbolic heap analysis aim to get the ownership and index-value
correlation respectively. Index-value correlation can be regarded as a more precise
ownership which maintains the position or key information. The superiority of index-
value correlation is owing to two reasons. Firstly, the heap abstraction is based on
constraints on index variables in symbolic heap analysis so that the positions of objects
are tracked when the objects are added in the container. However, flow analysis does
not distinguish the objects in the container and just takes them as a set.

Secondly, symbolic heap is generated per program location. The symbolic heap
is transformed based on the constraints encoding each operation of containers, so the
result is flow- and path-sensitive. However, flow graphs in Section 4.2 can not encode
statement order and path condition, so the imprecision is caused in the program with
multiple store operation, such as the program in Figure 24.

4.4.2 Applications

Taint analysis tracks the sensitive data as tainted information by starting with a pre-
defined source until it reaches a given sink. In the programs with a frequent use of
containers, the precision of taint analysis can not be easily assured because there are
objects flow in and out of containers, which makes the propagation of tainted informa-
tion sophisticated. In these scenarios, ownership and index-value correlation help to
identify the tainted variable [29, 30].

In Figure 30, the first element of v is tainted by the return value of source. Accord-
ing to Table 3 and Definition 4, the tainted value belongs to r and may flow to both of
a and b. Compared with the ownership, index-value correlation supports more precise
taint analysis and obtain the result that only the tainted value flows in the container as
the first element and then sinks in a.

1 v e c t o r<A*> r ;
2 r [0] = s o u r c e () ;
3 r [1] = NULL;
4 A* a = r [0] ;
5 A* b = r [1] ;

Figure 30: An example of taint analysis

Typestate analysis addresses the temporal safety properties of object, most of
which are heap-allocated objects, by encoding usage rules for library interfaces, such
as APIs, and these objects are commonly organized by the container [31]. The example
shown in Figure 31 demonstrates the importance of index-value correlation. Owner-
ship blurs the fact that where the value is stored in the container, thus it causes a false
positive at line 10. In contrast, index-value correlation can precisely detect the bug at

34

line 9 without reporting false positives.
In the presence of aliasing, the combination of over- and under-approximations sup-

ports a more precise update of typestate when the bracket constraints are utilized [32].
The similar works include strong update in general data flow problem [33].

1 v e c t o r<F i l e *> v ;
2 f o r (i n t k = 0 ; k <= 1 0 ; k ++) {
3 F i l e * a = m a l lo c () ;
4 v . p u s h b a c k (a) ;
5 i f (k % 2) {
6 a−>open () ;
7 }
8 }
9 v[0]−> w r i t e (” e r r o r ”) ;

10 v[1]−> w r i t e (” ok ”) ;

Figure 31: An example of typestate analysis

5 Applications

In the section, we discuss four clients which take advantage of heap analysis. The
works listed in this section show the importance of heap analysis in the bug detection
and program understanding of heap manipulating program.

5.1 Memory Corruption

Memory corruption is a secure bug type and commonly exists in real-world programs,
especially in the programs with intensive use of heap. Pointer manipulation and ab-
stract interfaces, which makes programming effective, also increases the difficulty of
detection. Imprecision of heap model are the root cause of false positives and nega-
tives. In the structural heap organized by pointers, precise heap properties, including
sharing and aliasing relation, can improve the precision of memory leak detection by
performing flow-sensitive analysis [4, 34]. In the structural heap organized by con-
tainers, ownership and index-value correlation can applied to prove memory safety
properties because precise object flow is obtained [28]. Moreover, function summaries
are proposed in many works to improve the scalability of the analysis [19, 35].

5.2 FSM State Error

A faulty finite state machines (FSM) state error occurs when the manipulations are
driven an object into an undesirable state, such as use of expired file descriptor and use
after free [36]. In the analysis of the resource maintained in the heap-allocated objects,
it is necessary to cut through the tangle of aliasing by which a pointer manipulates the

35

objects of interest to assure the precision. Typestate analysis provides a formal solution
to this problem [32, 33]. Example 5 introduces an FOTC formula in three-valued logic
to encode aliasing, and the related applications include garbage collection based on
temporal heap safety properties verification [37].

5.3 Memory Safety of Multi-threaded Program

Thread interference bug commonly occurs in multi-threaded programs. For example,
if two threads access the shared memory concurrently and at least one performs a write
operation, then data race occurs, which is a typical thread interference error. However,
it is difficult to detect thread interference error in a multi-thread program if it mutates
data structure through pointer manipulation, and it is challenging to identify shared
memory in multi-threaded program. Heap properties, such as points-to relation and
aliasing, are necessary to carve out the shared memory, but they might not be statically
determinable because of dynamic heap manipulation.

Fortunately, heap abstraction in Section 3 provides the inspiration to approximate
the shared memory. On the one hand, three-valued logic formula is powerful to abstract
unbounded structure. In order to get the shared memory for each thread, resource
invariants can be computed to carve out the shared memory [38]. For the program
with dynamic thread creation, the threads and memory are both abstracted in a uniform
model to assure the soundness of analysis [39]. On the other hand, separation logic
formula is nature to describe the heap memory accessible from the parameter of the
function, so it is more suitable for scalable concurrency program analysis [18, 40].

5.4 Heap-manipulating Program Understanding

Dynamic manipulation on the objects in the heap improves the difficulty of debugging
when an error occurs. Moreover, the various types of data structure make it chal-
lenging to understand the semantics of the program with complex heap manipulations,
which pose the obstacle to program maintenance. DOrder [23] generates the speci-
fication of interface, which reflects the structural and ordering relations, such as the
relationship of input and output of in-order traversal of a binary tree. SLING [11] syn-
thesizes and validates a separation logic formula describing the memory invariants at a
certain program location, which can help to explain bugs and identify false positives.
These two works both reply on runtime heap configurations and are implemented via
a CEGIS(counterexample guided inductive synthesis) loop, which is a new trend of
shape analysis [41, 42].

Compared with DOrder and SLING, static analysis techniques, including TVLA
framework and XISA, are also able to provide important memory information by gen-
erating the program invariants. However, the whole heap memory model prevents them
being applying in the understanding in real-world programs. Demanded-driven ap-
proaches are proposed to infer the specification according to particular scenarios, such

36

as identifying statement-achieving statements in the detection of bloat containers [7].

6 Conclusion

Heap analysis is a general collection of analyses that aim to infer linkage properties
of heap-allocated objects. Different from other analyses, such as pointer analysis, it
focuses on more high-level properties including reachability and ownership. In the
survey, we have presented heap analysis techniques for heap property inference in two
types of the structural heap organized by pointers and containers respectively.

Static shape analysis addresses the analysis of structural heap with pointers in the
framework of abstract interpretation. The structural heap contains the heap-allocated
objects which form a self-similar structure. Heap properties, such as reachability and
disjointness, are obtained in the transition of the abstract heap, which is encoded in
logics. Although shape analysis is capable of expressing precise and general heap
properties, it is still limited in scalability because of time cost in constraint solving and
the need for manual work in encoding predicates for heap abstraction.

Flow analysis and symbolic heap analysis analyze structural heap with containers,
in which the objects are not necessarily in the same type and might in a hierarchical
structure. Ownership and index-value correlation are heap properties of interest and
useful to get object flow information. Symbolic heap analysis performs a flow-sensitive
analysis to obtain index-value correlation, and its practicality relies on the optimization
of constraint solving techniques. In contrast, flow analysis produces a flow-insensitive
result to infer ownership, and the index of the values in containers are blurred.

The heap properties benefit many clients, such as memory corruption detection and
typestate verification. Points-to relation and typestate of objects can be obtained and
updated precisely according to the properties. For some specific programs, including
multi-threaded programs, separation logic-based shape analysis outlines the border of
shared memory, which is meaningful for data race detection. Besides, the properties
can also help developers understand program better and promote program maintenance
and debugging.

Flow-sensitive heap analysis assures the precision but suffers the heavy time bur-
den. Complex program structures, such as loops and recursive functions, make it even
more challenging. With the inspiration of separation logic in concurrent program ver-
ification, it is promising to propose a new form of representation to model structural
heap in a specific program. In the future, it might be feasible to analyze the structural
heap manipulated in a restricted form of program, such as structural heap manipulated
in a loop, and this would generate strong implications of stack pointers.

37

References
[1] Anders Møller and Michael I Schwartzbach. Static program analysis. Notes. Feb,

2012.

[2] Earl T Barr, Christian Bird, and Mark Marron. Collecting a heap of shapes.
In Proceedings of the 2013 International Symposium on Software Testing and
Analysis, pages 123–133, 2013.

[3] Vini Kanvar and Uday P. Khedker. Heap abstractions for static analysis. ACM
Comput. Surv., 49(2):29:1–29:47, 2016.

[4] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape anal-
ysis via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

[5] Dino Distefano, Peter W Ohearn, and Hongseok Yang. A local shape analysis
based on separation logic. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 287–302. Springer, 2006.

[6] Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula. Shape analysis with
structural invariant checkers. In Static Analysis, 14th International Symposium,
SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007, Proceedings, pages
384–401, 2007.

[7] Guoqing Xu and Atanas Rountev. Detecting inefficiently-used containers to avoid
bloat. In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 160–173, 2010.

[8] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs using
containers. ACM SIGPLAN Notices, 46(1):187–200, 2011.

[9] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodı́k. Demand-driven
points-to analysis for java. ACM SIGPLAN Notices, 40(10):59–76, 2005.

[10] Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis: mod-
eling the heap by merging equivalent automata. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 278–291, 2017.

[11] Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. SLING: using dynamic
analysis to infer program invariants in separation logic. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 788–801,
2019.

[12] Thomas W. Reps, Mooly Sagiv, and Reinhard Wilhelm. Shape analysis and ap-
plications. In The Compiler Design Handbook: Optimizations and Machine Code
Generation, Second Edition, page 12. 2007.

[13] Wikipedia. Abstract interpretation. https://en.wikipedia.org/wiki/

Abstract_interpretation. Accessed Feb 10, 2020.

38

https://en.wikipedia.org/wiki/Abstract_interpretation
https://en.wikipedia.org/wiki/Abstract_interpretation

[14] Bertrand Jeannet, Alexey Loginov, Thomas W. Reps, and Mooly Sagiv. A rela-
tional approach to interprocedural shape analysis. ACM Trans. Program. Lang.
Syst., 32(2):5:1–5:52, 2010.

[15] Noam Rinetzky and Shmuel Sagiv. Interprocedural shape analysis for recursive
programs. In Compiler Construction, 10th International Conference, CC 2001
Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, pages 133–149,
2001.

[16] Thomas W. Reps, Shmuel Sagiv, and Alexey Loginov. Finite differencing of
logical formulas for static analysis. In Programming Languages and Systems,
12th European Symposium on Programming, ESOP 2003, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2003,
Warsaw, Poland, April 7-11, 2003, Proceedings, pages 380–398, 2003.

[17] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July
2002, Copenhagen, Denmark, Proceedings, pages 55–74, 2002.

[18] Peter W. O’Hearn. Separation logic. Commun. ACM, 62(2):86–95, 2019.

[19] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. J. ACM, 58(6):26:1–
26:66, 2011.

[20] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco, California, USA, January
7-12, 2008, pages 247–260, 2008.

[21] Xavier Rival and Bor-Yuh Evan Chang. Calling context abstraction with shapes.
In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 173–186, 2011.

[22] Huisong Li, Francois Berenger, Bor-Yuh Evan Chang, and Xavier Rival.
Semantic-directed clumping of disjunctive abstract states. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pages 32–45, 2017.

[23] He Zhu, Gustavo Petri, and Suresh Jagannathan. Automatically learning shape
specifications. In Proceedings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 491–507, 2016.

[24] Aditya V. Thakur, Jason Breck, and Thomas W. Reps. Satisfiability modulo ab-
straction for separation logic with linked lists. In 2014 International Symposium
on Model Checking of Software, SPIN 2014, Proceedings, San Jose, CA, USA,
July 21-23, 2014, pages 58–67, 2014.

39

[25] Dictionary of Algorithms and Data Structures. Abstract data type. https://

xlinux.nist.gov/dads/HTML/abstractDataType.html. Accessed Aug 31,
2020.

[26] Ayse Isil Dillig. Precise and Automatic Verification of Container-manipulating
Programs. PhD thesis, Stanford University, 2011.

[27] Isil Dillig, Thomas Dillig, and Alex Aiken. Symbolic heap abstraction with
demand-driven axiomatization of memory invariants. ACM Sigplan Notices,
45(10):397–410, 2010.

[28] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong
vs. weak updates. In European Symposium on Programming, pages 246–266.
Springer, 2010.

[29] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and lifecycle-aware taint anal-
ysis for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[30] Steven Arzt and Eric Bodden. Stubdroid: automatic inference of precise data-flow
summaries for the android framework. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 725–735. IEEE, 2016.

[31] Xusheng Xiao, Gogul Balakrishnan, Franjo Ivančić, Naoto Maeda, Aarti Gupta,
and Deepak Chhetri. Arc++: effective and lifetime dependency analysis. In Pro-
ceedings of the 2014 International Symposium on Software Testing and Analysis,
pages 116–126, 2014.

[32] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.
Effective typestate verification in the presence of aliasing. In Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2006, Portland, Maine, USA, July 17-20, 2006, pages 133–144, 2006.

[33] Johannes Späth, Karim Ali, and Eric Bodden. Ideal: efficient and precise alias-
aware dataflow analysis. Proc. ACM Program. Lang., 1(OOPSLA):99–1, 2017.

[34] Nurit Dor, Michael Rodeh, and Shmuel Sagiv. Checking cleanness in linked lists.
In Static Analysis, 7th International Symposium, SAS 2000, Santa Barbara, CA,
USA, June 29 - July 1, 2000, Proceedings, pages 115–134, 2000.

[35] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and compact
modular procedure summaries for heap manipulating programs. In Mary W. Hall
and David A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San Jose,
CA, USA, June 4-8, 2011, pages 567–577. ACM, 2011.

[36] Common Weakness Enumeration. Cwe-1245: Improper finite state machines
(fsms) in hardware logic. https://cwe.mitre.org/data/definitions/

1245.html. Accessed Sept 7, 2020.

40

https://xlinux.nist.gov/dads/HTML/abstractDataType.html
https://xlinux.nist.gov/dads/HTML/abstractDataType.html
https://cwe.mitre.org/data/definitions/1245.html
https://cwe.mitre.org/data/definitions/1245.html

[37] Ran Shaham, Eran Yahav, Elliot K. Kolodner, and Shmuel Sagiv. Establishing
local temporal heap safety properties with applications to compile-time memory
management. In Static Analysis, 10th International Symposium, SAS 2003, San
Diego, CA, USA, June 11-13, 2003, Proceedings, pages 483–503, 2003.

[38] Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. Thread-modular
shape analysis. In Proceedings of the ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation, San Diego, California, USA,
June 10-13, 2007, pages 266–277, 2007.

[39] Eran Yahav. Verifying safety properties of concurrent java programs using 3-
valued logic. In Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, London, UK,
January 17-19, 2001, pages 27–40, 2001.

[40] Stephen Brookes and Peter W O’Hearn. Concurrent separation logic. ACM
SIGLOG News, 3(3):47–65, 2016.

[41] Marc Brockschmidt, Yuxin Chen, Pushmeet Kohli, Siddharth Krishna, and Daniel
Tarlow. Learning shape analysis. In Static Analysis - 24th International Sympo-
sium, SAS 2017, New York, NY, USA, August 30 - September 1, 2017, Proceedings,
pages 66–87, 2017.

[42] Long H. Pham, Jun Sun, and Quang Loc Le. Compositional verification of heap-
manipulating programs through property-guided learning. In Programming Lan-
guages and Systems - 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, In-
donesia, December 1-4, 2019, Proceedings, pages 405–424, 2019.

[43] Bertrand Jeannet, Peter Schrammel, and Sriram Sankaranarayanan. Abstract ac-
celeration of general linear loops. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 529–540,
2014.

[44] Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong Li. Proteus: Com-
puting disjunctive loop summary via path dependency analysis. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pages 61–72, 2016.

[45] Ke Wang and Zhendong Su. Blended, precise semantic program embeddings. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 121–134, 2020.

41

	Introduction
	Background and Preliminary
	Heap Allocation
	Linkage Properties in Structural Heap
	Points-to Graph
	Heap Abstraction

	Structural Heap with Pointers
	Preliminary
	Syntax of Heap Manipulation
	Abstract Interpretation

	TVLA: TVL based Shape Analysis
	Memory Model based on TVL
	Transformer in TVL
	Overhead of Predicate Abstraction

	Xisa: SL based Shape Analysis
	Memory Model based on SL
	Transformer in SL
	Disjunctive Clumping

	Summary
	Comparison
	Applications

	Structural Heap in Containers
	Preliminary
	Flow Analysis
	Flow Graph
	Ownership Inference
	Imprecision of Flow Analysis

	Symbolic Heap Analysis
	Symbolic Heap Model
	Index-Value Correlation Inference
	Comparison with Shape Analysis

	Summary
	Comparison
	Applications

	Applications
	Memory Corruption
	FSM State Error
	Memory Safety of Multi-threaded Program
	Heap-manipulating Program Understanding

	Conclusion

